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Sequential Compactness

Definition
Let X be a metric space. A subset K ⇢ X is sequentially
compact if every sequence in K has a subsequence that
converges to a point in K .

Compare to the Bolzano-Weirestrass property: every infinite
subset of K has a limit (cluster) point in K .

Theorem
K ⇢ X TFAE:

1 K is compact;
2 K is sequentially compact;
3 K has the B-W property.

Proof. (1) ) (2): Previous theorem.
(1) ) (3): A theorem proven last Friday, 10/02/2020.
(3) ) (1): A problem on the Midterm.
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Proof of Compactness Criterion, continued

The simplest thing to be done now: Show (2) ) (3).
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K seq.. compact ⇒ 7 subsequence cornerguy
to

a point in K ..
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a limit pt of E .
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Cauchy Sequences

Definition
A sequence {xk} in a metric space X is a Cauchy sequence if
for every " > 0, there is a natural N such that if m, n � N, then
d(xm, xn) < ".

Theorem
A sequence that converges is necessarily a Cauchy sequence.

Proof.
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Complete Spaces

Definition
A metric space X is said to be complete if every Cauchy
sequence in X has a limit in X .

Theorem
Rn is complete.

Proof.
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Continuation of Proof of Completeness of Rn
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Stupid ..
Prove a version of B - W theorem:

aenveny bdd sequence R" contains a

convergent subsequence
se
.

Follo.ws from compactness of closed n-cell
:

An n - cell is therefore sequentially aspect
⇒ EX$4 has a subseqeaeelxnedcomergug

to a point
in the

"idek ( and in IR
" ) .

Steps
.

Let L = Ake knit of this subsequence.

claim : Then the whole sequence
has L as a knit.
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Closed Subsets of Complete Spaces

Theorem
If X is a complete metric space with respect to a metric d and
Y is a nonempty closed subset of X , then Y is a complete
metric space with the same metric d.

Proof.
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Compactness Implies Completeness

Theorem
Completeness is necessary for compactness.

Proof.
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X compact ⇒ X complete .

A (Candy) sequence in a compact X
hes a subsequence convergent to *EX .

Cauchy
⇒ The whole#equence converges
to x

,
just as im sleep 3 of the proof

of completeness of Rn . D


