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Sequential Compactness

Definition

Let X be a metric space. A subset K C X is sequentially
compact if every sequence in K has a subsequence that
converges to a point in K.

Compare to the Bolzano-Weirestrass property: every infinite
subset of K has a limit (cluster) point in K.
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Proof. (1) = (2): Previous theorem.
(1) = (3): A theorem proven last Friday, 10/02/2020.
(3) = (1): A problem on the Midterm.
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Proof of Compactness Criterion, continued

The simplest thing to be done now: Show (2) = (3). | K
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Cauchy Sequences

Definition

A sequence {xx} in a metric space X is a Cauchy sequence if
for every € > 0, there is a natural N such that if m,n > N, then
d(Xm, Xn) < e.

Theorem
A sequence that converges is necessarily a Cauchy sequence

Proof. 7 4y & X ‘(f?_%gf\]>©1><ﬁ/\ / f)
e L

) < A0 )+ A0 )

g g,;
<__?/—s</} S

4/9



Complete Spaces

Definition
A metric space X is said to be complete if every Cauchy
sequence in X has a limit in X.

Theorem
R" is complete.
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Continuation of Proof of Completeness of R”
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Closed Subsets of Complete Spaces

Theorem

If X is a complete metric space with respect to a metric d and
Y is a nonempty closed subset of X, then Y is a complete
metric space with the same metric d.
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Compactness Implies Completeness

Completeness is necessary for compactness.
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