Math 5615 Honors: Some Special Sequences

Sasha Voronov
University of Minnesota

October 19, 2020
$\lim _{n \rightarrow \infty} a^{n}$

Proposition
If a is a real or complex number and $|a|<1$, then

$$
\lim _{n \rightarrow \infty} a^{n}=0
$$

Proof.
Step 1: The $a=0$ case.

$$
\lim _{n \rightarrow \infty} 0^{n}=\lim _{n \rightarrow \infty} 0=0
$$

Step 2: If $0<|a|<1$, then $\left\{\left|a^{n}\right|\right\}$ is monotone decreasing.

$$
\begin{aligned}
& \exists L:=\lim _{n \rightarrow \infty}\left|a^{n}\right| \geq 0 \\
& \left|a^{n+1}\right|=|a| \cdot\left|a^{n}\right|<\left|a^{n}\right|, b / c \\
& |a|<1,\left|a^{n}\right|>0
\end{aligned}
$$

Continuing with $\lim _{n \rightarrow \infty} a^{n}$

Step 3: The limit $L=0$. Idea: Suppose $L>0$. Then

$$
\left|a^{n}\right|=\frac{\left|a^{n+1}\right|}{|a|} \geq \frac{L}{|a|} \quad \forall n \geq 1
$$

and $L /|a|>L$ is also a lower bound. Contradicts
$L=\inf _{n}\left\{|a|^{n}\right\}$, greatest lower found.
Step 4: $\lim _{n \rightarrow \infty}\left|a^{n}\right|=0 \Leftrightarrow \lim _{n \rightarrow \infty} a^{n}=0$. We see that

$$
\left|\left|a^{n}\right|-0\right|=\left|a^{n}\right|=\left|a^{n}-0\right|<\varepsilon
$$

Cf.: The textbook uses Bernoulli's inequality $(1+h)^{n} \geq 1+n h$ for $h>0$, which we will use for the next special limit.

$$
\lim _{n \rightarrow \infty} \sqrt[n]{a}
$$

Proposition
If $a>0$, then $\lim _{n \rightarrow \infty} a^{1 / n}=1$.
Proof.
Step 1: The $a=1$ case. $\lim _{n \rightarrow \infty}(1)^{\frac{1}{n}}=\ln b_{1}=1$
Step 2: If $a>1$, then $a^{1 / n}>1$. Set $b_{n}=a^{1 / n}-1$. Then $\lim _{n \rightarrow \infty} b_{n}=0$, which is equivalent to $\lim _{n \rightarrow \infty} a^{1 / n}=1$.

$$
\begin{aligned}
& \left(\begin{array}{c}
\begin{array}{c}
a>b \geqslant 0>c e \\
0 \leq x \leq y \Rightarrow \sqrt[n]{b} \geqslant 0 \\
0
\end{array} \quad x \cdot x \leq x \cdot y \leq y \cdot y_{1} \text { etc. }
\end{array}\right) \\
& a=\left(1+b_{n}\right)^{n} \geqslant 1+n b_{n} \text { (Bernoulliis inequality) } \\
& \Rightarrow \overline{0}<b_{n} \leqslant \frac{a-1}{n} \frac{\text { squeeze tba }}{\text { H(1) }} \lim _{n \rightarrow \infty} b_{n}=0
\end{aligned}
$$

Continuing with $\lim _{n \rightarrow \infty} \sqrt[n]{a}$

Step 3: If $0<a<1$, then $1 / a>1$ and by step 2

$$
\lim _{n \rightarrow \infty}(1 / a)^{1 / n}=1
$$

Use the quotient rule:

$$
\begin{aligned}
& \text { e quotient rule: }{ }_{l}^{1 / n}= \\
& \lim _{n \rightarrow \infty} a^{1 / n} \\
& =\lim _{n \rightarrow \infty} \frac{1^{1 / n}}{(1 / a)^{1 / n}}=\frac{1}{1}=1 .
\end{aligned}
$$

The Euler Number e
Theorem
The sequence $\left\{(1+1 / n)^{n}\right\}$ is increasing and convergent. The limit is called the Euler number e:

$$
e:=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)_{f_{\text {con }}}^{n}
$$

Proof. $\left[\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}=e^{\left(1+\frac{x}{x}\right)^{x} \lim _{n \rightarrow \infty}\left(1+\frac{1}{x_{n}}\right)^{x_{n}}}=e, \dot{x}_{n \rightarrow \infty}\right]$
Lemma
Let a and b be real numbers such that $0 \leq a<b$. Then

$$
\frac{b^{n+1}-a^{n+1}}{b-a}<(n+1) b^{n} . \quad\left(\underline{C f} \cdot\left(x^{n+1}\right)^{\prime}=(n+1) x^{n}\right)
$$

Proof of Lemma:

$$
\begin{aligned}
& \text { Proof of Lemma: } \\
& b^{n+1}-a^{n+1}=\frac{(b-a)\left(b^{n}+b^{n-1} a+b^{a-2} a^{2}+\ldots+a^{n}\right)}{b-a<b^{n}+b^{n}+b^{n}+\ldots+b^{n}=(n+1) b^{n} \text { : Lemma proven }}<
\end{aligned}
$$

Proof of the Euler Number Theorem

Step 1: Sequence is increasing. Set $a=1+1 /(n+1)$ and $b=1+1 / n$ in Lemma.

$$
\begin{aligned}
& \frac{\left(1+\frac{1}{n}\right)^{n+1}-\left(1+\frac{1}{n+1}\right)^{n+1}}{\frac{1}{n}-\frac{1}{n+1}}<(n+1)\left(1+\frac{1}{n}\right)^{n} \\
& \left(1+\frac{1}{n}\right)^{n+1}-\left(1+\frac{1}{n+1}\right)^{n+1}<\frac{1}{n}\left(1+\frac{1}{n}\right)^{n} \\
& \left(1+\frac{1}{n}\right)^{n} \frac{\left(1+\frac{1}{n}-\frac{1}{n}\right)}{1}<\left(1+\frac{1}{n+1}\right)^{n+1}
\end{aligned}
$$

Continuing with Proof of the Limit for e

Step 2: Sequence is bounded. Set $a=1$ and $b=1+1 / 2 n$ in Lemma.

$$
\begin{aligned}
& \frac{\left(1+\frac{1}{2 n}\right)^{n+1}-1}{\left(\frac{1}{2 n}\right)}<(n+1)\left(1+\frac{1}{2 n}\right)^{n} \\
& \left(1+\frac{1}{2 n}\right)^{n+1}-1<\frac{n+1}{2 n}\left(1+\frac{1}{2 n}\right)^{n} \\
& \left(1+\frac{1}{2 n}\right)^{n}\left(1+\frac{1}{2 n}-\frac{n+1}{2 n}\right)<1 \\
& \left(1+\frac{1}{2 n}\right)^{n} \cdot \frac{1}{2}<1,\left(1+\frac{1}{2 n}\right)^{n}<2 \Rightarrow\left(1+\frac{1}{2 n}\right)^{2 n}<4 \\
& \left.\left(1+\frac{1}{n}\right)^{n}\right)_{\text {increase }}^{n}\left(1+\frac{1}{2 n}\right)^{2 n}<4 \quad \forall n \geqslant 1
\end{aligned}
$$

