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The Bolzano-Weierstrass Property

Definition
Let X be a metric space. A subset A ⇢ X has the
Bolzano-Weierstrass property if every infinite subset of A has a
limit point (cluster point) that belongs to A.

Theorem
Let A be a subset of a metric space (X , d). Then A is compact

iff A has the Bolzano-Weierstrass property.

Proof.
): Proved last time.
(: Part of the upcoming take-home Midterm Exam 1.
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Nested Intervals

Theorem (Nested interval property)

If Ik = [a(k)
1 , b(k)

1 ]⇥ · · ·⇥ [a(k)
n , b(k)

n ] is a nested sequence of

n-cells in Rn, that is, if

I1 � I2 � · · · � Ik � Ik+1 � . . . ,

then the intersection
T1

k=1 Ik is nonempty. If |b(k)
j

� a
(k)
j

| < 1
k

for

each j = 1, 2, . . . , n, then the intersection consists of a single

point.

Proof. 1. The n = 1 case:
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Nested Intervals, Proof Continued

2. The n � 2 case:
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The Bolzano-Weierstrass Theorem

Theorem
A bounded infinite set S in Rn has at least one cluster point

(which need not be an element of S).

Proof. Step 1: Construct nested n-cells.
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The Proof of the Bolzano-Weierstrass Theorem,
Continued
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The Proof of the Bolzano-Weierstrass Theorem,
Completed

Step 2: Claim: The common point is a cluster point of S.
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The Heine-Borel Theorem

Theorem
A subset K of Rn is compact if and only if it is closed and

bounded.

Proof. ): Proved for any metric space instead of Rn.
(: If K is bounded, then K ⇢ I for some n-cell I. Since K is
closed, it is enough to show I is compact.

Lemma
Every n-cell is compact.

Proof of Lemma. By contradiction: suppose there is an open
cover {O↵} which does not admit a finite subcover. Bisect and
construct I1 � I2 � . . . of n-cells each of which does not have a
finite subcover. Should continue indefinitely. But then the
unique common point x is in some O↵0 . Since it is open, there
is some B�(x) ⇢ O↵0 . But Ik for large enough k will be in B�(x)
and Ik is covered by just one O↵0 . Lemma is proven.
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