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The Bolzano-Weierstrass Property

Definition

Let X be a metric space. A subset A C X has the
Bolzano-Weierstrass property if every infinite subset of A has a
limit point (cluster point) that belongs to A.

Theorem

Let A be a subset of a metric space (X, d). Then A is compact
iff A has the Bolzano-Weierstrass property.

= Proved last time.
«: Part of the upcoming take-home Midterm Exam 1. Ol
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Nested Intervals

Theorem (Nested interval property)

Ifly = [agk), bsk)] X - [a(k) bf,k)] is a nested sequence
n-cells inR", that is, /f
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then the intersection (24 Ix is nonempty. If ]b](k) — aj(.k)] < 4 for
eachj=1,2,...,n, then the intersection consists of a single
point.
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Nested Intervals, Proof Continued
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The Bolzano-Weierstrass Theorem

Theorem

A bounded infinite set S in R" has at least one cluster point
(which need not be an element of S).

Proof. Step 1: Construct nested n-cells. oy
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The Proof of the Bolzano-Weierstrass Theorem,
Continued
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The Proof of the Bolzano-Weierstrass Theorem,
Completed

Step 2: Claim: The common point is a cluster point of S.
C@A\M X, €5 0\0&4"”}# O;CS
@r0)  Fd Tes e (%)
e
e - A

o ).
s 5?§ N Te = o < (% 1

7/10



The Heine-Borel Theorem

Theorem

A subset K of R" is compact if and only if it is closed and
bounded.

Proof. =: Proved for any metric space instead of R".
«: If K is bounded, then K c I for some n-cell /. Since K is
closed, it is enough to show / is compact. T T

0"

—_—

o

Lemma
Every n-cell is compact. =
y n-cellis compact. T, =T

|

Proof of Lemma. By contradiction: suppose there is an open

cover {O,} which does not admit a finite subcover. Bisect %eI-L,MQ
construct 1 O b O ... of n-cells each of which does not have a
finite subcover. Should continue indefinitely. But then the

unique common point x is in some O,,. Since it is open, there

is some Bs(x) C O,,. But I for large enough k will be in Bs(x)

and I, is covered by just one O,,. Lemma is proven. O
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