Math 5615 Honors: Series

Sasha Voronov

University of Minnesota

October 21, 2020

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The Sequence $\{\sqrt[n]{n}\}$

Theorem

The sequence $\{n^{1/n}\}$ for $n \ge 4$ is decreasing and convergent, and $\lim_{n\to\infty} n^{1/n} = 1$.

Proof. Step 1: Sequence is greasing, starting with $n \ge 4$.

 $\left(1+\frac{1}{n}\right)^n < 4$ (from last time) $\forall h \ge 1$ $\left(\frac{h+l}{h}\right)^{n} < h \qquad \forall n \ge 4$ $(h+1)^n < h^{n+1}$ $(n+1) < h^{n+1}$ $(h+1)^{n+1} < h^{n+1}$ (a) < (a) < (b) < (b)

Continuing with Proof of the Limit $\{\sqrt[n]{n}\}$

Step 2: Sequence is bounded below by 1. Therefore, it has a limit $L = \sup \{n^{1/n} \mid n \ge 4\} \ge 1$. **Step 3**: L = 1. Idea: show the sequence $\{n^{1/n} = (2n/2)^{2/2n}\}$ converges to L^2 . We have $\lim_{n\to\infty} n^{2/n} = L^2$. Then

$$\lim_{n \to \infty} \left(\frac{n}{2}\right)^{2/n} = \lim_{n \to \infty} n^{2/n} \left(\frac{1}{2}\right)^{2/n} = L^2$$

by the product rule.

$$\lim_{n \to \infty} a^{k} = 1 \quad \forall a > 0$$

Subsequence $\{(2n/2)^{2/2n}\}$ of $\{(n/2)^{2/n}\}$ also converges to L^2 . But $(2n/2)^{2/2n} = n^{1/n}$. Hence, $L^2 = L$ or L(L - 1) = 0 and L = 1.

Definition

Given a sequence $\{a_k\}$ of real or complex numbers, the formal expression

$$\sum_{k=1}^{\infty} a_k := a_1 + \cdots + a_k + a_{k+1} + \ldots$$

is called an (*infinite*) *series*. The numbers a_k are called the *terms* of the series. The finite sums

$$s_n := \sum_{k=1}^n a_k := a_1 + a_2 + \cdots + a_n$$

are called *partial sums*. They form a sequence $\{s_n\}$.

The Sum of a Series

Definition

An infinite series $\sum_{k=1}^{\infty} a_k$ converges if $\lim_{n\to\infty} s_n$ exists, and we define the *sum* of the series to be $s = \lim_{n\to\infty} s_n$. If $\{s_n\}$ does not converge, then we say the series *diverges*.

Example

If the real number x > 0 has decimal representation $a_0.a_1a_2...$, then the series $\sum_{k=0}^{\infty} a_k 10^{-k}$ converges with sum x. Indeed the sequence $s_n = \sum_{k=0}^{n} a_k 10^{-k}$ is increasing and bounded above by x and $\lim_{n\to\infty} s_n = \sup\{s_n\} = x$.

Example

$$s_{n} = \left[\begin{array}{c} \sum_{k=0}^{\infty} \frac{1}{2^{k}} = 1 + \frac{1}{2} + \frac{1}{2^{2}} + \frac{1}{2^{3}} + \dots \\ \frac{1}{2^{n}} = \left[\begin{array}{c} \frac{1}{2} \frac{1}{2^{n}} - \frac{1}{2^{n}} + \frac{1}{2^{n}} \\ \frac{1}{1 - \frac{1}{2}} \end{array} \right] \xrightarrow{(1-0)}{(1-\frac{1}{2})} \xrightarrow{(1-0)}{(1-\frac$$

The Cauchy Criterion

Theorem

An infinite series $\sum_{k=1}^{\infty} a_k$ of real or complex numbers converges if and only if for every $\varepsilon > 0$ there is an integer $N = N(\varepsilon)$ such that if $m > n \ge N$, then

$$|s_m - s_n| = |a_{n+1} + a_{n+2} + \cdots + a_m| < \varepsilon.$$

Proof. ZAE converges of (Sn) converges (=) (Sn) satisfies Cauchy criterion -

The Harmonic Series

Example (The harmonic series)

$$\sum_{k=1}^{\infty} \frac{1}{k} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots$$

Does is converge? Look at partial sums:

$$s_n = \sum_{k=1}^n \frac{1}{k} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \quad 2^k \neq 2^{k+1}$$

and their differences $s_m - s_n$ for $n = 2^k$ and
 $m = 2^{k+1} = 2^k + 2^k$:
 $|s_m - s_n| = s_m - s_n = \frac{1}{2^k + 1} + \frac{1}{2^k + 2} + \dots + \frac{1}{2^k + 2^k} \ge 2^k \frac{1}{2^{k+1}} = \frac{1}{2}$.
Then Cauchy \Rightarrow the series diverges and therefore the partial sums
are unbounded. $\Rightarrow = \frac{1}{2} + \frac{1}{2}$

and

The *n*th Term Divergence Test

Theorem

If the series $\sum_{k=1}^{\infty} a_k$ converges, then $\lim_{k\to\infty} a_k = 0$.

Example

The series $\sum_{k=1}^{\infty} k \cos(1/k)$ diverges. $\begin{pmatrix} k & cos \frac{1}{k} & \neg \infty \end{pmatrix}$ $\sum_{k=1}^{\infty} \frac{k-3}{2k} \quad d_{1} \vee erges \quad \begin{pmatrix} k-3 & 1 \\ 2k & \neg 2 \end{pmatrix} \quad b/c \quad cos \frac{1}{k} , \frac{1}{2} \quad b \neq 0$

Sums of Series. Geometric Series

Theorem (Sums and Constant Multiples of Series)

If $\sum_{k=1}^{\infty} a_k$ and $\sum_{k=1}^{\infty} b_k$ converge, then their sum, difference, and constant multiple by $c \in \mathbb{R}$ or \mathbb{C} also converge; moreover, $\sum_{k=1}^{\infty} (a_k \pm b_k) = \sum_{k=1} a_k \pm \sum_{k=1} b_k$ and $\sum_{k=1} ca_k = c \sum_{k=1} a_k$.

Theorem (Geometric Series)

The geometric series $\sum_{k=0}^{\infty} q^k$ converges if |q| < 1 and diverges if $|q| \ge 1$. If |q| < 1, then

$$\sum_{k=0}^{\infty} q^k = \frac{1}{1-q}$$

Proof.

The Euler number as a series

Theorem

The number $e := \lim_{n \to \infty} (1 + \frac{1}{n})^n$ is the sum of the following series:

$$e = \sum_{k=0}^{\infty} \frac{1}{k!} = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{k!} + \dots$$

Proof.
Series Converges:

$$s_n = \sum_{k=0}^{n} \frac{1}{k!} \le \sum_{k=0}^{n} \frac{1}{k!} \le \frac{1}{2k} + \frac{1}{k!} + \frac{1}{2!} \binom{1}{k!} = \frac{1}{k!} + \frac{1}{2!} \binom{1}{k!} + \frac{1}{2!} \binom{1$$

The Euler Number As a Series, continued

+ + $\frac{1}{\sqrt{1-\frac{1}{n}}}\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right)$ $\frac{1}{2} + \frac{1}{3} + \frac{1}{3}$ $\leq | \bot |$ 5 lis let's see N > lin 2 lin - slide

The Euler Number As a Series, continued

Step 2: Show = limb n > lim Sn. $\mathcal{B}_{h} = \left[+ \left(+ \frac{1}{2!} \left(1 - \frac{1}{h} \right) + \frac{1}{3!} \left(\left(-\frac{1}{h} \right) \left(1 - \frac{2}{h} \right) \right) \right]$ $\frac{1}{2} + \frac{1}{n!} \prod_{k=1}^{n} \left(1 - \frac{k}{n} \right)$ $\frac{1}{2} \left(1 + \frac{1}{2!} \left(1 - \frac{1}{n} \right) + \frac{1}{3!} \left(1 - \frac{1}{n} \right) \left(1 - \frac{2}{n} \right)$ $for any fixed m, let h \to \infty. Then <math>e = lih_h b_h$ $7 l + (1 + \frac{1}{2}) + \frac{1}{3} + \dots + \frac{1}{m_1} = 5m$