Math 5615 Honors: Series

Sasha Voronov
University of Minnesota

October 21, 2020

The Sequence $\{\sqrt[n]{n}\}$
Theorem
The sequence $\left\{n^{1 / n}\right\}$ for $n \geq 4$ is decreasing and convergent, and $\lim _{n \rightarrow \infty} n^{1 / n}=1$.
Proof. Step 1: Sequence is increasing, starting with $n \geq 4$.

$$
\begin{aligned}
& \left(1+\frac{1}{n}\right)^{n}<4 \quad \text { from last time) } \quad \forall n \geqslant 1 \\
& \left(\frac{n+1}{n}\right)^{n}<n \quad \forall n \geqslant 4 \\
& (n+1)^{n}<n^{n+1} \\
& (n+1)^{n}<n^{n+1} \\
& (n+1)^{\frac{1}{n+1}}<n^{\frac{1}{n}}
\end{aligned}
$$

Continuing with Proof of the Limit $\{\sqrt[n]{n}\}$

Step 2: Sequence is bounded below by 1. Therefore, it has a limit $L=\sin \left\{n^{1 / n} \mid n \geq 4\right\} \geq 1$.
Step 3: $L=1$. Idea: show the sequence $\left\{n^{1 / n}=(2 n / 2)^{2 / 2 n}\right\}$ converges to L^{2}. We have $\lim _{n \rightarrow \infty} n^{2 / n}=L^{2}$. Then

$$
\lim _{n \rightarrow \infty}\left(\frac{n}{2}\right)^{2 / n}=\lim _{n \rightarrow \infty} n^{2 / n}\left(\frac{1}{2}\right)^{2 / n}=L^{2}
$$

by the product rule.

$$
\lim _{n \rightarrow \infty} a^{1 / n}=1 \quad \forall a>0
$$

Subsequence $\left\{(2 n / 2)^{2 / 2 n}\right\}$ of $\left\{(n / 2)^{2 / n}\right\}$ also converges to L^{2}. But $(2 n / 2)^{2 / 2 n}=n^{1 / n}$. Hence, $L^{2}=L$ or $L(L-1)=0$ and $L=1$.

Series

Definition

Given a sequence $\left\{a_{k}\right\}$ of real or complex numbers, the formal expression

$$
\sum_{k=1}^{\infty} a_{k}:=a_{1}+\cdots+a_{k}+a_{k+1}+\ldots
$$

is called an (infinite) series. The numbers a_{k} are called the terms of the series. The finite sums

$$
s_{n}:=\sum_{k=1}^{n} a_{k}:=a_{1}+a_{2}+\cdots+a_{n}
$$

are called partial sums. They form a sequence $\left\{s_{n}\right\}$.

The Sum of a Series

Definition

An infinite series $\sum_{k=1}^{\infty} a_{k}$ converges if $\lim _{n \rightarrow \infty} s_{n}$ exists, and we define the sum of the series to be $s=\lim _{n \rightarrow \infty} s_{n}$. If $\left\{s_{n}\right\} \mathbb{k}$ does not converge, then we say the series diverges.

Example

If the real number $x>0$ has decimal representation $a_{0} \cdot a_{1} a_{2} \ldots$, then the series $\sum_{k=0}^{\infty} a_{k} 10^{-k}$ converges with sum x. Indeed the sequence $s_{n}=\sum_{k=0}^{n} a_{k} 10^{-k}$ is increasing and bounded above by x and $\lim _{n \rightarrow \infty} S_{n}=\sup \left\{s_{n}\right\}=x$.

Example

$$
\begin{gathered}
\sum_{k=0}^{\infty} \frac{1}{2^{k}}=1+\frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\ldots \\
s_{n}=1+\frac{1}{2}+\ldots+\frac{1}{2^{n}}=\frac{1-\frac{1}{2^{n+1}}}{1-\frac{1}{2}} \rightarrow \frac{1-0}{1-\frac{1}{2}}=2
\end{gathered}
$$

The Cauchy Criterion

Theorem
An infinite series $\sum_{k=1}^{\infty} a_{k}$ of real or complex numbers converges if and only if for every $\varepsilon>0$ there is an integer $N=N(\varepsilon)$ such that if $m>n \geq N$, then

$$
\left|s_{m}-s_{n}\right|=\left|a_{n+1}+a_{n+2}+\cdots+a_{m}\right|<\varepsilon .
$$

Proof.
$\sum a_{k}$ converges $\Leftrightarrow\left\{S_{n}\right\}$ converges $\Leftrightarrow\left\langle S_{n}\right\rangle$ sateslinis Cauchy criterion

The Harmonic Series

Example (The harmonic series)

$$
\sum_{k=1}^{\infty} \frac{1}{k}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots
$$

Does is converge? Look at partial sums:

$$
s_{n}=\sum_{k=1}^{n} \frac{1}{k}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n} \quad 2^{h}+p \leq 2^{h+1}
$$

and their differences $s_{m}-s_{n}$ for $n=2^{k}$ and $m=2^{k+1}=2^{k}+2^{k}$:
$\left|s_{m}-s_{n}\right|=s_{m}-s_{n}=\frac{1}{2^{k}+1}+\frac{1}{2^{k}+2}+\cdots+\frac{1}{2^{k}+2^{k}} \geq 2^{k} \frac{1}{2^{k+1}}=\frac{1}{2}$.
Then Cauchy \Rightarrow the series diverges and therefore, the partial sums are unbounded. $\Rightarrow \sum \frac{1}{k}$ diverges to ∞

The nth Term Divergence Test

Theorem
If the series $\sum_{k=1}^{\infty} a_{k}$ converges, then $\lim _{k \rightarrow \infty} a_{k}=0$.

```
Proof.
\(\sum a_{k}\) converges \(\Leftrightarrow\) Cauchy criterion
\[
\begin{aligned}
& \not \forall \varepsilon>0 \exists N: \forall n \geqslant N \quad\left|s_{n+1}-s_{n}\right|=\left|a_{n+1}\right| \\
& <\varepsilon \Leftrightarrow \lim _{n \rightarrow \infty}\left|a_{n+1}\right|=0 \Leftrightarrow \lim _{n \rightarrow \infty} a_{n+1}=0 \\
& \Leftrightarrow \lim _{n \rightarrow \infty} a_{n}=0 \quad i
\end{aligned}
\]
```

Example
The series $\sum_{k=1}^{\infty} k \cos (1 / k)$ diverges. $\binom{\left.k \cos \frac{1}{k} \rightarrow \infty\right)}{\sum_{k=1}^{\infty} \frac{k-3}{2 k}$ diverges $\left(\frac{k-3}{2 k} \rightarrow \frac{1}{2}\right)}=\left(c \cos \frac{1}{k} \geqslant \frac{1}{2} \operatorname{for}_{k} k=\frac{\pi}{3}\right.$ as
$8 / 11$

Sums of Series. Geometric Series

Theorem (Sums and Constant Multiples of Series)

If $\sum_{k=1}^{\infty} a_{k}$ and $\sum_{k=1}^{\infty} b_{k}$ converge, then their sum, difference, and constant multiple by $c \in \mathbb{R}$ or \mathbb{C} also converge; moreover,
$\sum_{k=1}^{\infty}\left(a_{k} \pm b_{k}\right)=\sum_{k=1} a_{k} \pm \sum_{k=1} b_{k}$ and
$\sum_{k=1} c a_{k}=c \sum_{k=1} a_{k}$.

Theorem (Geometric Series)

The geometric series $\sum_{k=0}^{\infty} q^{k}$ converges if $|q|<1$ and diverges if $|q| \geq 1$. If $|q|<1$, then

$$
\sum_{k=0}^{\infty} q^{k}=\frac{1}{1-q}
$$

Proof.

The Euler number as a series
Theorem
The number e := $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}$ is the sum of the following series:

$$
e=\sum_{k=0}^{\infty} \frac{1}{k!}=1+1+\frac{1}{2!}+\frac{1}{3!}+\cdots+\frac{1}{k!}+\ldots
$$

Proof.
Series Converges: $\frac{1}{k!} \leq \frac{1}{2^{k}} \quad \forall k \geqslant 4\left(k_{1} \geqslant 2^{k}\right)$

$$
S_{n}=\sum_{k=0}^{n} \frac{1}{k!} \leqslant \sum_{k=0}^{n} \frac{1}{2} k!2^{k}
$$

step 1
Want $\lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty} b_{n}, b_{n}=\left(1+\frac{1}{n}\right)^{n}$

$$
b_{n}=\left(1+\frac{1}{n}\right)^{n}=\sum_{k=0}^{n} \frac{n \rightarrow \infty}{k!(n-k)!}\left(\frac{1}{n}\right)^{k}=1+1+\frac{1}{2!}\left(1-\frac{1}{k}\right)+
$$

The Euler Number As a Series, continued

$$
\begin{aligned}
& +\frac{1}{3}!\frac{n(n-1)(n-2)}{n^{3}}+\ldots+\frac{1}{h}!\frac{n(n-1) \ldots, 1}{n^{n}} \\
& =1+1+\frac{1}{2!}\left(1-\frac{1}{n}\right)+\frac{1}{3!}\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \\
& +\ldots+\frac{1}{n!}\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right)^{\prime} \ldots\left(1-\frac{n-1}{n}\right) \\
& \leq 1+1+\frac{1}{2!}+\frac{1}{3!}+\ldots+\frac{1}{n!}=s_{n}^{n} \\
& \Rightarrow e^{\operatorname{let}^{2}=\lim _{n} b_{n}} \leq \lim _{n} s_{n} \text {. Now lessee } \\
& \text { if } e=\lim _{n \rightarrow \infty} b_{n} \geqslant \lim _{n \rightarrow \infty} s_{n} \text { (next slide) }
\end{aligned}
$$

The Euler Number As a Series, continued

$$
\begin{aligned}
& \text { Step 2: Show }=\lim _{n \rightarrow \infty} b_{n} \geqslant \lim _{n \rightarrow \infty} s_{n}: \\
& b_{n}=1+1+\frac{1}{2!}\left(1-\frac{1}{n}\right)+\frac{1}{3!}\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \\
& \quad+\ldots+\frac{1}{n!} \prod_{k=1}^{n-1}\left(1-\frac{k}{n}\right) \\
& \text { drop a few terms } \\
& >1+1+\frac{1}{2!}\left(1-\frac{1}{n}\right)+\frac{1}{3!}\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \\
& +\ldots+\frac{1}{m!} \prod_{k=1}^{m!}\left(1-\frac{k}{n}\right) \forall m \leq n
\end{aligned}
$$

For any fixed m, let $n \rightarrow \infty$. Then $e=\lim _{n \rightarrow \infty} b_{n}$

$$
\geqslant 1+1+\frac{k}{2!}+\frac{1}{3!}+\ldots+\frac{1}{m!}=S_{m} \quad \forall m \geqslant 1 . \quad \square
$$

