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The Sequence { n
p

n}

Theorem

The sequence {n1/n} for n � 4 is decreasing and convergent,
and limn!1 n1/n = 1.

Proof. Step 1: Sequence is increasing, starting with n � 4.
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Continuing with Proof of the Limit { n
p

n}

Step 2: Sequence is bounded below by 1. Therefore, it has a
limit L = sup{n1/n | n � 4} � 1.
Step 3: L = 1. Idea: show the sequence {n1/n = (2n/2)2/2n}
converges to L2. We have limn!1 n2/n = L2. Then

lim
n!1

⇣n
2

⌘2/n
= lim

n!1
n2/n

✓
1
2

◆2/n
= L2

by the product rule.

Subsequence {(2n/2)2/2n} of {(n/2)2/n} also converges to L2.
But (2n/2)2/2n = n1/n. Hence, L2 = L or L(L � 1) = 0 and
L = 1.
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Series

Definition
Given a sequence {ak} of real or complex numbers, the formal
expression

1X

k=1

ak := a1 + · · ·+ ak + ak+1 + . . .

is called an (infinite) series. The numbers ak are called the
terms of the series. The finite sums

sn :=
nX

k=1

ak := a1 + a2 + · · ·+ an

are called partial sums. They form a sequence {sn}.
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The Sum of a Series

Definition
An infinite series

P1
k=1 ak converges if limn!1 sn exists, and

we define the sum of the series to be s = limn!1 sn. If {sn})
does not converge, then we say the series diverges.

Example
If the real number x > 0 has decimal representation
a0.a1a2 . . . , then the series

P1
k=0 ak10�k converges with sum

x . Indeed the sequence sn =
Pn

k=0 ak10�k is increasing and
bounded above by x and limn!1 sn = sup{sn} = x .

Example
1X

k=1

1
2k = 1 +

1
2
+

1
22 +

1
23 + . . .

sn =
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The Cauchy Criterion

Theorem
An infinite series

P
k=1 ak of real or complex numbers

converges if and only if for every " > 0 there is an integer
N = N(") such that if m > n � N, then

|sm � sn| = |an+1 + an+2 + · · ·+ am| < ".

Proof.
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The Harmonic Series

Example (The harmonic series)
1X

k=1

1
k
= 1 +

1
2
+

1
3
+

1
4
+ . . .

Does is converge? Look at partial sums:

sn =
nX

k=1

1
k
= 1 +

1
2
+

1
3
+ · · ·+ 1

n

and their differences sm � sn for n = 2k and
m = 2k+1 = 2k + 2k :

|sm � sn| = sm � sn =
1

2k + 1
+

1
2k + 2

+ · · ·+ 1
2k + 2k � 2k 1

2k+1 =
1
2
.

Then Cauchy ) the series diverges and therefore the partial sums
are unbounded.
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The nth Term Divergence Test

Theorem
If the series

P1
k=1 ak converges, then limk!1 ak = 0.

Proof.

Example
The series

P1
k=1 k cos(1/k) diverges.
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Sums of Series. Geometric Series

Theorem (Sums and Constant Multiples of Series)
If
P1

k=1 ak and
P1

k=1 bk converge, then their sum, difference,
and constant multiple by c 2 R or C also converge; moreover,P1

k=1(ak ± bk ) =
P

k=1 ak ±
P

k=1 bk andP
k=1 cak = c

P
k=1 ak .

Theorem (Geometric Series)

The geometric series
P1

k=0 qk converges if |q| < 1 and
diverges if |q| � 1. If |q| < 1, then

X

k=0

qk =
1

1 � q
.

Proof.
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The Euler number as a series

Theorem

The number e := limn!1
�
1 + 1

n
�n is the sum of the following

series:

e =
1X

k=0

1
k !

= 1 + 1 +
1
2!

+
1
3!

+ · · ·+ 1
k !

+ . . .

Proof.
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The Euler Number As a Series, continued
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The Euler Number As a Series, continued
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