

Sasha Voronov

University of Minnesota

October 30, 2020

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

- 2

Example

For the series

$$1 + \frac{2}{3} + \frac{1}{3} + \frac{2}{3^2} + \frac{1}{3^2} + \frac{2}{3^3} + \frac{1}{3^3} + \dots,$$

we have $|a_{k+1}|/|a_k| = 2/3$ if k is odd and $|a_{k+1}|/|a_k| = 1/23$ if k is even...

$$\lim_{k \to \infty} |a_{k+1}| / |a_k| = \text{Kolsh't exist}$$

$$\limsup |a_{k+1}|/|a_k| = \frac{2}{3} < |$$

Converges by the ratio test.

Summation by parts

The root and ratio tests work well to show absolute convergence. Then next convergence test works well for conditionally convergent series.

Theorem (Abel's Summation by Parts)

Let $\{a_k\}_0^\infty$ and $\{b_k\}_0^\infty$ be sequences of real or complex numbers. For any integer $n \ge 0$, let

Then

The Proof of Abel's Summation by Parts Theorem

Dirichlet's Test

Theorem

The series $\sum_{k=0}^{\infty} a_k b_k$ converges if the following conditions hold:

1. The partial sums $s_n(a) = \sum_{k=0}^n a_k$ form a bounded sequence;

2.
$$b_0 \ge b_1 \ge b_2 \ge \dots;$$

3. $\lim_{k \to \infty} b_k = 0$

Proof. $\sum_{k=0}^{h} \left| S_k(\alpha) \right| \left| \left(b_{k+1} - b_k \right) \right| \leq M \sum_{k=0}^{h} \left| b_{k+1} - b_k \right|$ $= M \sum_{k=0}^{h} \left(b_k - b_k + i \right) = M \left(b_0 - b_1 + b_1 - b_2 + ... \right)$ $+ b_0 - b_{n+1} \sum_{k=0}^{h} M \left(b_0 - b_{n+1} \right) \leq M^1 \left(b_0 - b_1 + b_1 - b_2 + ... \right)$ $+ b_0 - b_{n+1} \sum_{k=0}^{h} M \left(b_0 - b_{n+1} \right) \leq M^1 \left(b_0 - b_1 + b_1 - b_2 + ... \right)$ $= M \left(b_0 - b_{n+1} \right) \leq M^1 \left(b_0 - b_1 - b$

The Proof of Dirichlet's Theorem, Continued

Proof.

$$\begin{array}{l} 0 \leq \left| S_{n}(a) \ b_{n+1} \right| \leq M \left| b_{n+1} \right| \rightarrow 0 \\ \Rightarrow \left| \lim_{n \to \infty} \left| s_{n}(a) \ b_{n+1} \right| = 0 \Rightarrow \lim_{n \to \infty} \left| s_{n}(a) \right| \\ b_{n+\infty} \\ & b_{n+\infty} \\ \end{array}$$
By
$$\begin{array}{l} \lim_{n \to \infty} \left(c_{n} - d_{n} \right) = \lim_{n \to \infty} c_{n} - \lim_{n \to \infty} d_{n} \\ & \quad \text{if these exist} \\ \\ & \quad \text{we get the conclusion. D} \end{array}$$

1

6/10

Alternating Series

Corollary

If $\{a_k\}$ is monotone decreasing with limit 0, then the alternating series

$$\sum_{k\pm \mathbf{O}}^{\infty} (-1)^k a_k$$

converges.

Proof. Dirichlet's test => 1 - (+(-) + 1) = ... $\left(s_{n}(+k) = (-1)^{k} = (1, 0] = bdd \right) = \sum (-i)^{k} a_{k}$ (a_{k}) mondene decreasing to 0 = $\sum (-i)^{k} a_{k}$ (a_{k}) mondene decreasing to 0 = $\sum (-i)^{k} a_{k}$