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The Cantor Set: Uncountable Set of Measure Zero

Idea: extract the middle thirds from [0, 1] ⇢ R:
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Each of the sets Dn is extracted, or carved away, from [0, 1].
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The Cantor Set, Continued

Definition
The Cantor set C is the complement in [0, 1] of the union of the
sets Dn:

C :=
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How much space does the Cantor set take in [0,1]?

1.
P

k�1 µ(Dk ) =

2. C may be covered by a finite number of closed intervals of
arbitrarily small total length, see current HW.
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Ternary expansions of numbers x in [0, 1]
Repeat the same construction as for decimal and binary
epansions, now base-3: After having b0.b1 . . . bn  x
constructed, take bn+1 � 0 the greatest so that

b0.b1 . . . bnbn+1 =
n+1X

j=0

bj  x .

(The fact that it is a ternary (base-3) expansion actually means

0.b1b2 · · · =
1X

j=1

bj/3j .)

But for numbers q3�k , which are exactly those which expand
as b0.b1b2000 . . . , do a revision, today only:

(5)3�3 = .011222 · · · = .012000 . . . ,

(4)3�3 = .010222 · · · = .011000 . . .

Use . . . 0222 . . . instead of . . . 1000 . . . !
Thus, 1/3 = .1 = .0222 . . . , but 2/3 = .2000 . . . 5 / 11
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The Cantor Set Is Uncountable

Theorem (Midterm Exam 1)
The Cantor set C consists of all the numbers in the closed
interval [0, 1] whose ternary expansion has only 0’s and 2’s and
may end in infinitely many 2’s:

C = {x = 0.b1b2 · · · 2 [0, 1] | bi = 0 or 2}.

Corollary
The Cantor set is uncountable.

Yet, C is very far from being dense, unlike uncountable R \Q.
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Connected Sets

A disconnected metric space X : X = U [ V , U \ V = ?,
U 6= ?, V 6= ?.
A disconnected subset S ⇢ X : (S, d) is disconnected as
metric space, i.e.,
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Intervals in R
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Connected Subsets of R

Theorem
A subset S of R is connected iff it is an interval. In particular R
is connected.

): Suppose S is not an interval, i.e., 9x < y 2 S and z 62 S
with x < y < z. Want to show S disconnected.

(: Suppose S is an interval but disconnected by open U and V
of R. Want: contradiction.
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