## Math 5615H：Honors：Introduction to Analysis The Cantor Set Connected Sets Sequences and Their Limits

Sasha Voronov

University of Minnesota

October 5， 2020

## The Cantor Set: Uncountable Set of Measure Zero



Idea: extract the middle thirds from $[0,1] \not \mathbb{R}$ :

$$
\begin{aligned}
& D_{0}=\varnothing, \\
& D_{1}=\left(\frac{1}{3}, \frac{2}{3}\right), \\
& D_{2}=\left(\frac{1}{9}, \frac{2}{9}\right) \cup\left(\frac{7}{9}, \frac{8}{9}\right), \\
& D_{3}=\left(\frac{1}{27}, \frac{2}{27}\right) \cup\left(\frac{7}{27}, \frac{8}{27}\right) \cup\left(\frac{19}{27}, \frac{20}{27}\right) \cup\left(\frac{25}{27}, \frac{26}{27}\right),
\end{aligned}
$$

Each of the sets $D_{n}$ is extracted, or carved away, from $[0,1]$.

## The Cantor Set, Continued

## Definition

The Cantor set $C$ is the complement in $[0,1]$ of the union of the sets $D_{n}$ :

$$
C:=\left\{x \in[0,1] \mid x \notin \bigcup_{k=0}^{\infty} D_{k}\right\}=[0,1] \backslash \bigcup_{k=0}^{\infty} D_{k} .
$$

Observe:

$$
C=\bigcap_{k=0}^{\infty} C_{k}, \text { where }
$$

$$
C_{0}=[0,1],
$$

$$
C_{1}=\left[0, \frac{1}{3}\right] \cup\left[\frac{2}{3}, 1\right],
$$


$C_{2}=\left[0, \frac{1}{9}\right] \cup\left[\frac{2}{9}, \frac{1}{3}\right] \cup\left[\frac{2}{3}, \frac{7}{9}\right] \cup\left[\frac{8}{9}, 1\right], \ldots$

## How much space does the Cantor set take in $[0,1]$ ?

1. $\sum_{k \geq 1} \mu\left(D_{k}\right)=$
2. $C$ may be covered by a finite number of closed intervals of arbitrarily small total length, see current HW.


## Ternary expansions of numbers $x$ in $[0,1]$

Repeat the same construction as for decimal and binary epansions, now base-3: After having, $b_{0} \cdot b_{1} \ldots b_{n} \leq x$ constructed, take $b_{n+1} \geq 0$ the greatest so that

$$
b_{0} \cdot b_{1} \ldots b_{n} b_{n+1}=\sum_{j=0}^{n+1} b_{j} \leq x . \leq x .
$$

(The fact that it is a ternary (base-3) expansion actually means

$$
\left.X=0 . b_{1} b_{2} \cdots=\sum_{j=1}^{\infty} b_{j} / 3^{j} .\right)
$$

But for numbers $q 3^{-k}$, which are exactly those which expand $b_{0}, b_{1} \ldots b_{k} 000 \ldots$

$$
\begin{aligned}
& \text { (5) } 3^{-3}=.011 \overline{2222} \cdots=.012 \overline{000} \cdots, \\
& \text { (4) } 3^{-3}=.010 \overline{222} \cdots=.011 \overline{000} \cdots
\end{aligned}
$$

Use $\ldots 0 \overline{222} \ldots$ instead of $\ldots 1 \overline{000} \ldots$ !
Thus, $1 / 3=.1=.0 \overline{222} \ldots$, but $2 / 3=.2000 \ldots \quad 1=0 . \overline{222}$.

## The Cantor Set Is Uncountable

## Theorem (Midterm Exam 1)

The Cantor set $C$ consists of all the numbers in the closed interval $[0,1]$ whose ternary expansion has only 0's and 2's and may end in infinitely many 2's:

$$
C=\left\{x=0 . b_{1} b_{2} \cdots \in[0,1] \mid b_{i}=0 \text { or } 2\right\}
$$

## Corollary

The Cantor set is uncountable.
Yet, $C$ is very far from being dense, unlike uncountable $\mathbb{R} \backslash \mathbb{Q}$.
suppose not, ie.. $C$ countable. Then $C$ is given by
a list $x_{1}=0, b_{11} b_{12} b_{13} \ldots$

$$
x_{2}=0, b_{21} b_{22} b_{23} \ldots
$$



$$
\text { (0) of } b_{n_{n}}=2
$$

Connected Sets

A disconnected metric space $X: X=U \cup V, U \cap V=\varnothing$, $U \neq \varnothing, V \neq \varnothing$, and $U, U$ open .
A disconnected subset' $S \subset X:(S, d)$ is disconnected as metric space, i.e., $\exists U, V$ open $\subset X, M a S \neq \phi, V a S \neq \phi$,

$$
x=u<\begin{aligned}
& \left.U_{n} S\right) \cap(V o S)=\phi \\
& S=(U n S) \cup(V a S) \\
& \text { or, equively, } S \subset U U v
\end{aligned}
$$

$S \in X$ connected if it's coot in $X$. discomecbed.
$\varnothing$, $\left\{x^{\}}\right\}$are connected

Intervals in $\mathbb{R}$
Def. $[a, b],(a, b],[a, b),(a, b)$

$(\mathbb{L}-\infty, 3)$
and alike
not allowed)
HW Problem: $S \subset \mathbb{R}$ is an interval iff $\forall x, y \in S, x<y$, and $\forall z: x \leqslant z \leqslant y, z \in S$.

## Connected Subsets of $\mathbb{R}$

## Theorem

A subset $S$ of $\mathbb{R}$ is connected iff it is an interval. In particular $\mathbb{R}$ is connected.
$\Rightarrow$ : Suppose $S$ is not an interval, i.e., $\exists x<y \in S$ and $z \notin S$ with $x<y<z$. Want to show $S$ disconnected.
$\Leftarrow$ : Suppose $S$ is an interval but disconnected by open $U$ and $V$ of $\mathbb{R}$. Want: contradiction.

$$
\left.\begin{array}{rl}
\mu(C) & =1-\mu\left(D_{0}\right)-\mu\left(D_{1}\right)-\mu\left(D_{2}\right) \cdots \\
\text { (2ebespuc) measure } & =1-\left(0+\frac{1}{3}+\frac{2}{9}+\frac{4}{27}+\ldots\right)=0 \\
\sum_{n=1}^{\frac{2}{3} n}=\frac{1}{3} \sum_{n=0}^{n}\left(\frac{2}{3}\right)^{n}=\frac{1}{3} \frac{1}{1-\frac{2}{3}}=1 \\
C & =\left(\frac{1}{k} D_{k}\right)^{C}=[0,1]
\end{array}\right)
$$

