Math 5615H: Honors: Introduction to Analysis The Cantor Set Connected Sets Sequences and Their Limits

Sasha Voronov

University of Minnesota

October 5, 2020

The Cantor Set: Uncountable Set of Measure Zero

Idea: extract the middle thirds from $[0, 1] \subset \mathbb{R}$:

$$D_{0} = \emptyset,$$

$$D_{1} = \left(\frac{1}{3}, \frac{2}{3}\right),$$

$$D_{2} = \left(\frac{1}{9}, \frac{2}{9}\right) \cup \left(\frac{7}{9}, \frac{8}{9}\right),$$

$$D_{3} = \left(\frac{1}{27}, \frac{2}{27}\right) \cup \left(\frac{7}{27}, \frac{8}{27}\right) \cup \left(\frac{19}{27}, \frac{20}{27}\right) \cup \left(\frac{25}{27}, \frac{26}{27}\right),$$
...

Each of the sets D_n is extracted, or carved away, from [0, 1].

The Cantor Set, Continued

Definition

The *Cantor set C* is the complement in [0, 1] of the union of the sets D_n :

$$\mathcal{C} := \left\{ x \in [0,1] \mid x
ot\in igcup_{k=0}^\infty D_k
ight\} = [0,1] \setminus igcup_{k=0}^\infty D_k$$

Observe:
$$C = \bigcap_{k=0}^{\infty} C_k$$
, where
 $C_0 = [0, 1],$
 $C_1 = \begin{bmatrix} 0, \frac{1}{3} \end{bmatrix} \cup \begin{bmatrix} 2\\3, 1 \end{bmatrix},$
 $C_2 = \begin{bmatrix} 0, \frac{1}{9} \end{bmatrix} \cup \begin{bmatrix} 2\\9, \frac{1}{3} \end{bmatrix} \cup \begin{bmatrix} 2\\3, \frac{7}{9} \end{bmatrix} \cup \begin{bmatrix} \frac{8}{9}, 1 \end{bmatrix}, \dots$

1.
$$\sum_{k\geq 1} \mu(D_k) =$$

2. *C* may be covered by a finite number of closed intervals of arbitrarily small total length, see current HW.

(not necessarily disjount intervals)

Ternary expansions of numbers x in [0, 1]

Repeat the same construction as for decimal and binary epansions, now base-3: After having $b_0.b_1...b_n \le x$ constructed, take $b_{n+1} \ge 0$ the greatest so that

$$b_0.b_1...b_nb_{n+1} = \sum_{j=0}^{n+1} b_j \leq x.$$

(The fact that it is a ternary (base-3) expansion actually means

$$\begin{array}{l} \times = \ 0.b_1b_2\cdots = \sum_{j=1}^{\infty} b_j/3^j.) \\ \text{But for numbers } q3^{-k}, \text{ which are exactly those which expand} \\ \text{as } b_0.b_1b/000\ldots, \text{ do a revision, today only:} \\ \hline b_1 \cdots b_k^{0000\ldots}, \text{ do a revision, today only:} \\ \hline b_1 \cdots b_k^{0000\ldots}, (5)3^{-3} = .011222\cdots = .012000\ldots, \\ (4)3^{-3} = .010222\cdots = .011000\ldots, \\ \text{Use } \ldots 0\overline{222}\ldots \text{ instead of } \ldots 1\overline{000}\ldots! \\ \text{Thus, } 1/3 = .1 = .0\overline{222}\ldots, \text{ but } 2/3 = .2\overline{0000}\ldots \end{array}$$

5/11

Theorem (Midterm Exam 1)

The Cantor set C consists of all the numbers in the closed interval [0, 1] whose ternary expansion has only 0's and 2's and may end in infinitely many 2's:

$$C = \{x = 0.b_1b_2 \cdots \in [0,1] \mid b_i = 0 \text{ or } 2\}.$$

Corollary

The Cantor set is uncountable.

Yet, C is very far from being dense, unlike uncountable $\mathbb{R} \setminus \mathbb{Q}$. Suppose not, i.e., C combile. Then C is given by a test $X_1 = 0.6_1.6_2.6_3...$ $X_2 = 0.6_2.6_2.5_2...$ $X = 0.6_1.6_2.6_3...$ $X = 0.6_1.6_2.6_3...$ $X = 0.6_1.6_2.6_3...$ $X = 0.6_1.6_2.6_3...$ $X = 0.6_1.6_2.6_3...$ $X = 0.6_1.6_2.6_3...$

Connected Sets

A disconnected metric space $X: X = U \cup V, U \cap V = \emptyset$, $U \neq \emptyset, V \neq \emptyset$, and U, V open, A disconnected subset $S \subset X$: (S, d) is disconnected as metric space, i.e., FU, Vopen CX, Uas #\$VAS #\$ $(UnS) \cap (VnS) = \emptyset$ \sim S = (UnS) v (VnS)or, equivily, SCUVV 'nΧ. SEX connected, if it's not Liscomected. 2 x 3 ave connected ・ロト ・ 同ト ・ ヨト ・ ヨト

Intervals in ${\mathbb R}$

(a, b], (a, b], (a, b], (a, b), (a, b) $(a, b) \in \mathbb{R} \cup \{-\infty, \infty\}$ $(c-\infty)$ a b -okla HW Problem! S < IR is an interval iff tx, yes, x<y, and tz: x<z<y, zes.

Connected Subsets of $\mathbb R$

Theorem

A subset S of \mathbb{R} is connected iff it is an interval. In particular \mathbb{R} is connected.

⇒: Suppose *S* is not an interval, i.e., $\exists x < y \in S$ and $z \notin S$ with x < y < z. Want to show *S* disconnected.

 \Leftarrow : Suppose *S* is an interval but disconnected by open *U* and *V* of \mathbb{R} . Want: contradiction.

 $\mu(C) = 1 - \mu(D_0) - \mu(D_1) - \mu(D_2) - \dots$ (Labesque) measure = $1 - (0 + \frac{1}{3} + \frac{2}{7} + \frac{4}{77} + \dots) = 0$ $\sum_{n=1}^{\infty} \frac{2^{n-1}}{3^n} = \frac{1}{3} \sum_{n=0}^{\infty} \frac{2^n}{3^n} = \frac{1}{3} \frac{1}{1-\frac{3}{3}} = \frac{1}{1-\frac{3}{3}}$ $C = \left(\begin{array}{c} D_{k} \\ E_{20} \\ E_{20} \\ M(C) \end{array} \right) \left(\begin{array}{c} C_{k} \\ C_{k$