Math 5615H: Honors: Connected Sets in \mathbb{R} Sequences and Their Limits

Sasha Voronov

University of Minnesota

October 7, 2020

A disconnected metric space $X: X = U \cup V, U \cap V = \emptyset$. $U \neq \emptyset, V \neq \emptyset.$ A disconnected subset $S \subset X$: (S, d) is disconnected as metric space. Equivalently, \exists open $U, V \subset X$ s.t. $S = (S \cap U) \cup (S \cap V), (S \cap U) \bowtie (S \cap V) = \varnothing, S \cap U \neq \varnothing,$ $S \cap V \neq \emptyset$. The first condtn eqt to $S \subset U \cup V$.

Connected subset: one which is not disconnected.

Intervals in \mathbb{R}

 $[a, b], [a, b), (-\infty, b], \text{ etc.} \quad a \notin b \text{ (not be essential)}$ Not on current HW (simple exercise): $I \subset \mathbb{R}$ is an interval iff $\forall x, y \in I \text{ and } z \in \mathbb{R}: x \leq z \leq y \Rightarrow z \in I. \text{ (or } X < z < y \Rightarrow z \in I) \text{ (for } X < z < y \Rightarrow z \in I) \text{ (for } X < z < y \Rightarrow z \in I) \text{ (for } X < z < y \Rightarrow z \in I) \text{ (for } X < z < y \Rightarrow z \in I) \text{ (for } X < z < y \Rightarrow z \in I) \text{ (for } X < z < y \Rightarrow z \in I) \text{ (for } X < z < y \Rightarrow z \in I) \text{ (for } X < z < y \Rightarrow z \in I) \text{ (for } X < z < y \Rightarrow z \in I) \text{ (for } X < z < y \Rightarrow z \in I) \text{ (for } X < z < y \Rightarrow z \in I) \text{ (for } X < z < y \Rightarrow z \in I) \text{ (for } X < z < y \Rightarrow z \in I) \text{ (for } X < z < y \Rightarrow z \in I) \text{ (for } X < z < y \Rightarrow z \in I) \text{ (for } X < z < y \Rightarrow z \in I) \text{ (for } X < z < y \Rightarrow z \in I) \text{ (for } X < z < y \Rightarrow z \in I) \text{ (for } X < z < y \Rightarrow z \in I) \text{ (for } X < z < y \Rightarrow z \in I) \text{ (for } X < z < y \Rightarrow z \in I) \text{ (for } X < z < y \Rightarrow z \in I) \text{ (for } X < z < y \Rightarrow z \in I) \text{ (for } X < z < y \Rightarrow z \in I) \text{ (for } X < z < y \Rightarrow z \in I) \text{ (for } X < z < y \Rightarrow z \in I) \text{ (for } X < z < y \Rightarrow z \in I) \text{ (for } X < z < y \Rightarrow z \in I) \text{ (for } X < z < y \Rightarrow z \in I) \text{ (for } X < z < y \Rightarrow z \in I) \text{ (for } X < z < y \Rightarrow z \in I) \text{ (for } X < z < y \Rightarrow z \in I) \text{ (for } X < z < y \Rightarrow z \in I) \text{ (for } X < z < y \Rightarrow z \in I) \text{ (for } X < z < y \Rightarrow z \in I) \text{ (for } X < z < y \Rightarrow z \in I) \text{ (for } X < z < y \Rightarrow z \in I) \text{ (for } X < z < y \Rightarrow z \in I) \text{ (for } X < z < y \Rightarrow z \in I) \text{ (for } X < z < y \Rightarrow z \in I) \text{ (for } X < z < y \Rightarrow z \in I) \text{ (for } X < z < y \Rightarrow z \in I) \text{ (for } X < z < y \Rightarrow z \in I) \text{ (for } X < z < y \Rightarrow z \in I) \text{ (for } X < z < y \Rightarrow z \in I) \text{ (for } X < z < y \Rightarrow z \in I) \text{ (for } X < z < y \Rightarrow z \in I) \text{ (for } X < z < y \Rightarrow z \in I) \text{ (for } X < z < y \Rightarrow z \in I) \text{ (for } X < z < y \Rightarrow z \in I) \text{ (for } X < z < y \Rightarrow z \in I) \text{ (for } X < z < y \Rightarrow z \in I) \text{ (for } X < z < y \Rightarrow z \in I) \text{ (for } X < z < y = x \text{ (for } X < z < y \Rightarrow z \in I) \text{ (for } X < z < y = x \text{ (for } X < z < y = x \text{ (for } X < z < y \Rightarrow z \in I) \text{ (for } X < z < y = x \text{ (for } X < z < y = x \text{ (for } X < z < y = x \text{ (for } X) \text{ (for } X < z < y = x \text{ (for } X) \text{ (for } X < z < y = x \text{ (for } X) \text{ ($

Theorem

A subset S of \mathbb{R} is connected iff it is an interval. In particular \mathbb{R} is connected.

 \Rightarrow : Suppose S is not an interval, i.e., $\exists x < y \in S$ and $z \notin S$ with $x < \mathcal{P} < \mathcal{P}$ Want to show *S* disconnected. $U = \begin{pmatrix} -\infty \\ U = \end{pmatrix} \quad V = \begin{pmatrix} 2 \\ -\infty \end{pmatrix} \quad \text{open } 4 \text{ IR}$ $U \cap V = \begin{pmatrix} 0 \\ -\infty \end{pmatrix} \quad S \geq \begin{pmatrix} 0 \\ -\infty \end{pmatrix} \quad V = \begin{pmatrix} 1 \\ -\infty \end{pmatrix} \quad S \cap U \Rightarrow x_1 \text{ Sn} \quad V \Rightarrow y$ $\in : \text{ Suppose } S \text{ is a$ **nontrivial** $interval but disconnected by open U and V of R. Want: contradiction. Let <math>x \in U \cap S, y \in V \cap S$. W20G: X < Y. Idea; try to extend Sulto the right of X as far as possible; EX, 2), 2 > X - look at such intervals d: = sup { ZER (X < 2 < Y and EX, 2) < Sn W] is rissull Nonempty X intercor in W => X e (X - r, X+r) C W, TX, X+r) < Sn W

Continuation of proof: S an interval \Rightarrow S connected

X<L Sy = LES (6/c Sincludes all internet. () If LEU(asine U open, JE, >0: CH, dtEi) CUNS () If LEU(asine U open, JE, >0: CH, dtEi) CUNS Cotradicts (2 is an upper 60) × dE, y shall (2) If LEV. Since V open, JE2". (d-E2, HJ CSNV if E2 is small X 2 4 ⇒ L'not the least upper bd: ∠-E2/2 will be an upper bd. Contralection .

Simultaneously Open and Closed Subsets of $\mathbb R$

Corollary

The only subsets of \mathbb{R} that are both open and closed are \emptyset and \mathbb{R} .

Sequences in Metric Spaces and Limits

Definition (sequence as $a : \mathbb{N} \to X$ or $\{a_n\}$, limit, converges, $a_h := a(h) \in X$ (convergent); if VEROJNEN: HNON & (an, L) < E. X2L=lim an non Uniqueness: L, L2 G X L, =linan L2 =linan =) L L, +L2, E = d(L, L2)/2 = L, is ut a la Example: $\{\frac{1}{n}\}$ sequence in \mathbb{R} (numerical sequence) Arch. property) lin 1=0: 4270 take N EAN "HUSN KICT < E Chi an = (an) bdd Boundedness: (Choose $\varepsilon = 1$) , x; J (x;,L)+1) d(an,an) < the d(xi, th)