Math 5615H: Honors: The algebra of limits in \mathbb{R} , \mathbb{C} , and \mathbb{R}^n Subsequences and sequential compactness

Sasha Voronov

University of Minnesota

October 9, 2020

Definition A sequence $\{a_n\}$ in a metric space X has limit $L \in X$ if $\forall \varepsilon > 0 \quad \exists N \in \mathbb{N} : \forall n > N$ we have $d(a_n, L) < \varepsilon$.

The Algebra of Sequences in \mathbb{R} and \mathbb{R}^n

Theorem

Suppose for two sequences in \mathbb{R} , \mathbb{C} , or \mathbb{R}^n

 $\lim_{k\to\infty}a_k=a \text{ and } \lim_{k\to\infty}b_k=b.$ (HCEIR (or C) fin (a) = ca. Scalar Multiplication \$\forall \cap{b} \in (\vec{c} \vec{v}) \lim(\vec{c} a_k) \vec{e}_k ists
Sum \lim(\vec{a}_k + \vec{k}_k) = a + \vec{b}
Product (not for \$\mathbb{R}^n) \vec{b}_k \vec{b}_k \vec{b}_k = a \vec{b}
Quotient (not for \$\mathbb{R}^n) \vec{b}_k \vec{a}_k (\vec{b}_k) = a \vec{b}
provided and \$\vec{b} \neq 0\$, **Proof of (3)**: Given $\in 70$ let's choose N_1 : $\forall h_7N_1 |a_n-a| < \epsilon/and and <math>N_2$: $\forall n > N_2$ $|a_n'-b| < \epsilon/and |a_n-a| < \epsilon/and |a_n'-b| < \epsilon/and |a_n > h_n' < N_1, N_2$. Then $\forall n > N_1 |a_n = a_b| = |a_n = a_b - a_b + a_b - a_b| \le \epsilon$

and C.

< [bh |. | an-a | + (a [. [bn-b]) $\leq |b_n| \cdot \epsilon/2M + \epsilon/2$ (what $< \epsilon$) Recall [bn] bold, beig < 16n 1. Egy+ E convergenet, i.e., 3M>0: (bn) < M +n $< M \cdot \frac{2}{2M} + \frac{2}{3} = \mathcal{E}$ Adjust N, S The vest 'see text.

Subsequences

 $\{a_n\}$ sequence, $n_1 < n_2 < \dots$ infinite sequence of naturals. Then $\{a_{n_k}\}$ is called a *subsequence* and its limit, if exists, a *subsequential limit* of $\{a_n\}$. **Observe**: $n_k \ge k \quad \forall k \ge 1$.

Theorem

Every subsequence of a convergent sequence converges.

4/8

Subsequences in Compact Subsets

Theorem

If K is a compact subset of a metric space X, then every sequence in K has a subsequence that converges to a point in K.

Proof. (By contrapositive: If K has a sequence with no subsequence converging to a point in K, then K is not compact.)

Enough to consider sequences with infinite range, because every sequence with a finite range has a convergent subsequence. $[an] \subset K$ $\forall x \in K$ $\exists z = 70$. $B_{\varepsilon}(x)$ will contain 200 many terms of the sequence (b/c x to not otherwise, easy to find a subsequence converging to x). (be(x) (xck) open cover

This lover has no finite subcover. Otherwise, F (BE, (X), BE, (X2), -, BE, (Xn)), UBE, (Xn) K =) Sequence hes a finite range 12

Sequential Compactness

Definition

Let X be a metric space. A subset $K \subset X$ is *sequentiqally compact* if every sequence in K has a subsequence that converges to a point in K.

Compare to the *Bolzano-Weirestrass property*: every infinite subset of K has a limit (cluster) point in K.

Theorem

 $K \subset X$ TFAE:

- K is compact;
- K is sequentially compact;
- K has the B-W property.

Proof. (1) \Rightarrow (2): Previous theorem. (1) \Rightarrow (3): A theorem proven last Friday, 10/02/2020. (3) \Rightarrow (1): A problem on the Midterm.

Proof of Compactness Criterion, continued

To complete the proof : (2) (3) The simplest thing now: Show (3) \Rightarrow (2). Next time ...