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The Definition of a Limit of a Sequence

Definition A sequence {an} in a metric space X has limit L 2 X
if 8" > 0 9N 2 N : 8n > N we have d(an, L) < ".
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The Algebra of Sequences in R and Rn

Theorem
Suppose for two sequences in R, C, or Rn

lim
k!1

ak = a and lim
k!1

bk = b.

1 Scalar Multiplication
2 Sum
3 Product (not for Rn)
4 Quotient (not for Rn)

Proof of (3):
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Subsequences
{an} sequence, n1 < n2 < . . . infinite sequence of naturals.
Then {ank} is called a subsequence and its limit, ef exists, a
subsequential limit of {an}. Observe: nk � k 8k � 1.

Theorem
Every subsequence of a convergent sequence converges.

Proof.
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Subsequences in Compact Subsets

Theorem
If K is a compact subset of a metric space X, then every
sequence in K has a subsequence that converges to a point in
K .

Proof. (By contrapositive: If K has a sequence with no
subsequence converging to a point in K , then K is not
compact.)
Enough to consider sequences with infinite range, because
every sequence with a finite range has a convergent
subsequence.
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Sequential Compactness

Definition
Let X be a metric space. A subset K ⇢ X is sequentiqally
compact if every sequence in K has a subsequence that
converges to a point in K .

Compare to the Bolzano-Weirestrass property: every infinite
subset of K has a limit (cluster) point in K .

Theorem
K ⇢ X TFAE:

1 K is compact;
2 K is sequentially compact;
3 K has the B-W property.

Proof. (1) ) (2): Previous theorem.
(1) ) (3): A theorem proven last Friday, 10/02/2020.
(3) ) (1): A problem on the Midterm.
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Proof of Compactness Criterion, continued

The simplest thing now: Show (3) ) (2).
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To complete the proof : µ µ
Next time
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