Math 5615 Honors: Further Topics on Continuity

Sasha Voronov
University of Minnesota

November 11, 2020

Continuous Image of a Compact Set
Theorem
If a function $f: K \rightarrow Y$ is continuous on a compact set $K \subset X$, then $f(K)$ is compact.
Proof. Suppose $\left\{U_{\alpha} \mid \alpha \in I\right\}$ is an opener $f(k)$ Let $v_{\alpha} \subset X$ be open such that $V_{\alpha} \cap K=f^{-1}\left(u_{\alpha}\right)$. (V_{1} exists for each $\alpha, b / c, f^{-1}\left(u_{2}\right)$ is open rel. to K. .) Note that $\left\{V_{\alpha} \mid \alpha \in I\right\}$ form an open of K : $K \subset \bigcup_{\alpha \in I} V_{\alpha}$: indeed $\forall x \in K \quad f(x) \in f(K)$ and $f(x) \leftarrow U_{\alpha}$ for sone $\alpha \Rightarrow x \in f^{-1}\left(u_{2}\right) \subset V_{\alpha}^{*}$.
K convepact, $\Rightarrow z\left\{V_{2}, \ldots, U_{2 n}\right\}$, a formate subcoser of k Clank: $\left\{W_{\alpha_{i}}(i=1,-h]\right.$ is a finite subcover of $\left\{u_{\alpha} \mid \alpha \in I\right\}$. Indeed $\}^{n}(k) \subset \bigcup_{i=1}^{n} U_{\alpha i}, b / c \quad \forall y \in f(k)$ $\exists x \in K \quad y=f(x)$. Then $x \in V_{\alpha}$ for sone j, 计erefore, $f(x)=y \in U_{\alpha} ; \cdot \frac{1}{}$

Uniform Continuity

Definition

We say that f is uniformly continuous on D if for every $\varepsilon>0$ there is a $\delta=\delta(\varepsilon)>0$ such that if $x, y \in D$ and $d(x, y)<\delta$, then $d(f(x), f(y))<\varepsilon$.
Difference with continuity at each point $a \in D$ (roughly):
Continuity on $D: \delta=\delta(a, \varepsilon)$, Uniform continuity on $D: \delta=\delta(\varepsilon)$.

Theorem

If a function $f: K \rightarrow Y$ is continuous on a compact set $K \subset X$, then f is uniformly continuous.

Proof. Suppose f is not uniformly continuous on K. This means there is an $\varepsilon>0$ such that for each $\delta>0$, say, $\delta_{n}=1 / n$, there exist $x_{n}, z_{n} \in K$ such that $d\left(x_{n}, z_{n}\right)<1 / n$ but $d\left(f\left(x_{n}\right), f\left(z_{n}\right)\right) \geq \varepsilon$. This gives two sequences $\left\{x_{n}\right\}$ and $\left\{z_{n}\right\}$ such that $\lim _{n \rightarrow \infty} d\left(x_{n}, z_{n}\right)=0$ but $d\left(f\left(x_{n}\right), f\left(z_{n}\right)\right) \geq \varepsilon$.

Proof, Continued
K is compact \Rightarrow sequentially compact \Rightarrow \exists subsequence $\left\{x_{n}\right\} \rightarrow a \in K$. Since $d\left(x_{n k}, z_{n_{h}}\right) \rightarrow 0$ as $k \rightarrow 0$. Note $\left\{z_{n_{k}}\right\} \rightarrow a_{k \rightarrow \infty}$ as $d\left(a, z_{n k}\right) \leqslant d\left(a, x_{n k}\right)+d\left(x_{n k}, z_{n k}\right)$ implies $d\left(a, z_{n k}\right) \rightarrow 0$, i.e, $\left\{z_{n_{k}}\right\} \rightarrow a$.
Sequential charaction of contimity of $f(x)$ at a : get $f\left(x_{n k}\right) \rightarrow f(a)$ and $f\left(z_{n_{k}}\right) \rightarrow f(a)$.
$\Rightarrow d\left(f\left(x_{n k}\right), f(a)\right) \rightarrow 0$ and $d\left(f\left(z_{n k}\right), f(a)\right) \rightarrow 0$

$$
\begin{aligned}
& \Rightarrow d\left(f\left(x_{n h}\right), f(a)\right. \\
& \Rightarrow^{0 \leq d} d\left(f\left(x_{n h}\right), f\left(z_{n-k}\right)\right) \leq d\left(f\left(x_{n_{k}}\right), f(a)\right)+d\left(f(x), f\left(z_{n k}\right)\right)
\end{aligned}
$$

Proof, Continued
Examples. I. $f(x)=x^{2}: \mathbb{R} \rightarrow \mathbb{R}$ conts. is not mif. catimuos. Thate $\varepsilon=1$; then $\forall \delta>0$ $\exists x, y \in \mathbb{R}:|x-y|<\delta$ but $\left|x^{2}-y^{2}\right| \geqslant 1$.
$\left|x^{2}-y^{2}\right|=|x-y| \cdot|x+y|$. Take $x \geqslant \frac{1}{\delta}$
and $y=x+\frac{\delta}{2}$. Then $|x-y|=8 \frac{8}{2}<\delta$
anard $|x+y|=2 x+\frac{8}{2}>2 x \geqslant \frac{2}{8}$
Then $\left|x^{2}-y^{2}\right|=|x-y| \cdot|x+y|=\frac{\delta}{2}|x+y|$

$$
>\frac{d}{2} \cdot \frac{2}{\delta}=1 .
$$

d. $f(x)^{2}=x^{2}$ on $[0$, is is unif. costs by Thna.
3. $f(x)=\sin x$ on ive is mifif conts. (The argument is a biftle onore complisetel xion for $\left.f(x)=x^{2}\right)$.

The Extreme Value Theorem

Theorem

A real-valued continuous function $f: K \rightarrow \mathbb{R}$ is continuous on a compact set $K \subset X$ achieves its absolute maximum and absolute minimum value on K; that is, there exist points x_{M} and x_{m} in K such that $f\left(x_{m}\right) \leq f(x)$ for all $x \in K$, and $f\left(x_{M}\right) \geq f(x)$ for all $x \in K$.

Proof.

The image set $f(K)$ is a compact subset of \mathbb{R}, so $f(K)$ is bounded and closed, and hence $f(K)$ contains inf $f(K)$ and sup $f(K)$, because they have to be elements of $f(K)$ or its limit points.

Example

$f(x)=1 / x$ is continuous on $(0, \infty)$ but does not achieve maximum and minimum values. It does on [1,2] or any closed interval within $(0, \infty)$. It does not on $[-1,1]$.

