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Continuous Image of a Compact Set

Theorem

If a function f : K ! Y is continuous on a compact set K ⇢ X,
then f (K ) is compact.

Proof.
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Uniform Continuity

Definition

We say that f is uniformly continuous on D if for every " > 0

there is a � = �(") > 0 such that if x , y 2 D and d(x , y) < �,

then d(f (x), f (y)) < ".

Difference with continuity at each point a 2 D (roughly):

Continuity on D: � = �(a, "),
Uniform continuity on D: � = �(").

Theorem

If a function f : K ! Y is continuous on a compact set K ⇢ X,
then f is uniformly continuous.

Proof. Suppose f is not uniformly continuous on K . This

means there is an " > 0 such that for each � > 0, say, �n = 1/n,

there exist xn, zn 2 K such that d(xn, zn) < 1/n but

d(f (xn), f (zn)) � ". This gives two sequences {xn} and {zn}
such that limn!1 d(xn, zn) = 0 but d(f (xn), f (zn)) � ".
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Proof, Continued
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Proof, Continued
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The Extreme Value Theorem

Theorem

A real-valued continuous function f : K ! R is continuous on a
compact set K ⇢ X achieves its absolute maximum and
absolute minimum value on K ; that is, there exist points xM and
xm in K such that f (xm)  f (x) for all x 2 K , and f (xM) � f (x)
for all x 2 K .

Proof.

The image set f (K ) is a compact subset of R, so f (K ) is

bounded and closed, and hence f (K ) contains inf f (K ) and

sup f (K ), because they have to be elements of f (K ) or its limit

points.

Example

f (x) = 1/x is continuous on (0,1) but does not achieve

maximum and minimum values. It does on [1, 2] or any closed

interval within (0,1). It does not on [�1, 1].
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