Math 5615 Honors: Further Topics on Continuity

Sasha Voronov

University of Minnesota

November 11, 2020

<ロト <回ト < 国ト < 国ト < 国ト 三 国

Continuous Image of a Compact Set

Theorem

If a function $f : K \to Y$ is continuous on a compact set $K \subset X$, then f(K) is compact.

Proof. Suppose {U, (det) is a opening f(K). Let V_C X be open such that V_nK=f-1(42) (V_ exists for each 2, b/c, f-1(U2) is open rel. to K.) Note that {V2/2ET's form an open of K: KCUV2: indeed VXEK FIXIE f(K) and fixi Eug for some 2 => XEF-1(U2) EV2. K consepart => 3 { Vai, - Van J e finite subcover of K Clark : [Uaili=1, - 2h] is a finite subcover of the let I. Indeed fik) CUlld: B/c Hych(K) = XEK y=f(x). Then XEVd; for some j, Herefore, f(x)=y E haj

Uniform Continuity

Definition

We say that *f* is *uniformly continuous on D* if for every $\varepsilon > 0$ there is a $\delta = \delta(\varepsilon) > 0$ such that if $x, y \in D$ and $d(x, y) < \delta$, then $d(f(x), f(y)) < \varepsilon$.

Difference with continuity at each point $a \in D$ (roughly): **Continuity on** $D: \delta = \delta(a, \varepsilon)$, **Uniform continuity on** $D: \delta = \delta(\varepsilon)$. Note: Unif. continuity implies

Theorem

If a function $f : K \to Y$ is continuous on a compact set $K \subset X$, then f is uniformly continuous.

Proof. Suppose *f* is not uniformly continuous on *K*. This means there is an $\varepsilon > 0$ such that for each $\delta > 0$, say, $\delta_n = 1/n$, there exist $x_n, z_n \in K$ such that $d(x_n, z_n) < 1/n$ but $d(f(x_n), f(z_n)) \ge \varepsilon$. This gives two sequences $\{x_n\}$ and $\{z_n\}$ such that $\lim_{n\to\infty} d(x_n, z_n) = 0$ but $d(f(x_n), f(z_n)) \ge \varepsilon$.

Proof, Continued

K is compart => sequentially compart => ∃ subsequence { Xng} → a ∈ K. Souce d(Xnk, Enk) - 0 as k-10. Note (Zng)-10 as d (a, the) & d (a, Xng) + d (Xng, the) implies d(a, Zne) -0, i.e. 1 Zne) - a. Sequential character of continuity of f(x) at a: get f(Xnk) -> f(a) and f(Znk) -> f(a). => d(f(Xnh), f(a)) -> 0 and d(f(zne), f(a))=0 $= \int d(f(X_{n_k}), f(Z_{n_k})) \leq d(f(X_{n_k}), f(a)) + d(f(a), f(Z_{n_k})) \\ \rightarrow 0, which contradicts d(f(X_{n_k}), f(Z_{n_k})) \geq \varepsilon \\ \neq R. D$

Proof, Continued

Examples, V. $f(x) = x^2$: $|R \rightarrow |R \text{ conts.}$ is not mif. continuos. Take E=1; then 4 8 >0 3 x, y E R: 1 X - y 1 < 8 but 1 x - y 2 > 1. 1x-y=1x-y]. 1x+y]. Take X > 15 and $y = X + \frac{1}{2}$. Then $|X-y| = \frac{1}{2} < d$ and 1×+y1 = 2×+ = > 2×> = The $|x^2 - y^2| = |x - g| \cdot |x + y| = \frac{d'}{2} |x + y|$ $2\frac{1}{2} \cdot \frac{2}{7} = 1$. $d = f(x) = x^2$ on to, 1] is unif. coarts by Them. $3 \cdot f(x) = sin x$ on 1R is unif. coarts. (The argument is $3 \cdot f(x) = sin x$ on 1R is unif. coarts. (The argument is a little more complicated than for $f(x) = x^2$) a little more complicated than for $f(x) = x^2$)

The Extreme Value Theorem

Theorem

A real-valued continuous function $f : K \to \mathbb{R}$ is continuous on a compact set $K \subset X$ achieves its absolute maximum and absolute minimum value on K; that is, there exist points x_M and x_m in K such that $f(x_m) \le f(x)$ for all $x \in K$, and $f(x_M) \ge f(x)$ for all $x \in K$.

Proof.

The image set f(K) is a compact subset of \mathbb{R} , so f(K) is bounded and closed, and hence f(K) contains $\inf f(K)$ and $\sup f(K)$, because they have to be elements of f(K) or its limit points.

Example

f(x) = 1/x is continuous on $(0, \infty)$ but does not achieve maximum and minimum values. It does on [1,2] or any closed interval within $(0, \infty)$. It does not on [-1, 1].