Math 5615 Honors: Discontinuities of Monotone Functions The Derivative

Sasha Voronov

University of Minnesota

November 16, 2020

Discontinuities of Monotone Functions The Derivative

Reminder: Classification of Discontinuities

Roth flc-), f(c+) exist Discontinuities of f: (a,b) = (R, cela,b) 2nd kind 7 infin (otherwise) or L(c+ +00 +100

Discontinuities of Monotone Functions

Definition

Let $f : I \to \mathbb{R}$ where *I* is an interval. Then 1. *f* is *monotone* (*strictly*) *increasing on I* if $x_1 < x_2$ implies $f(x_1) \le f(x_2)$, $(f(x_1) < f(x_2)$, resp.); 2. *f* is *monotone* (*strictly*) *decreasing on I* if $x_1 < x_2$ implies $f(x_1) \ge f(x_2)$ ($f(x_1) > f(x_2)$, resp.).

Theorem

Monotone functions on an open interval I have discontinuities only of the first kind, more specifically, jump discontinuities.

Countability of the set of discontinuities of a monotone function

Corollary

A monotone function on an open interval I has at most countably many discontinuities.

Proof of Corollary. For each discontinuity, choose a rational number in the "jump interval." This gives an injective map from the set of discontinuities in I to \mathbb{Q} .

Get r: E - R, where E CI is the set of
discontinuities.
Clarm, r is injective. If X1
$$f(X, +) \leq f(X_2 -)$$
 and $\Rightarrow r(X_1) < r(X_2)$.
 $f(X, +) \leq f(X_2 -)$ at most countable. D= 2000

Proof of Theorem on Discontinuities of a Monotone Function

WLOG assume *f* is monotone increasing. Let $a \in I$. Then $f(x) \leq f(a)$ for all x < a. Thus, the set

$$L := \{f(x) \mid x < a\}$$

is bounded above. Let $M := \sup L$. If $\varepsilon > 0$, then there exists $p \in I$ such that p < a and

$$0 \leq M - f(p) < \varepsilon.$$

Otherwise, if $\forall p < a, M - f(p) \ge \varepsilon$, then $M - \varepsilon$ would be a smaller upper bound for *L*. Then whenever p < x < a, we have $f(p) \le f(x) \le M$ and so $0 \le M - f(x) < \varepsilon$. $(f.e., use \ 0; = a - p)$

Therefore, $f(a-) = \lim_{x \to a-} f(x)$ exists and equals M.

Proof of Theorem, Concluded

Right-hand limit: The set $R := \{f(x) \mid x > a\}$ is bounded below, let $m := \inf R$. Then, similarly, $\lim_{x \to a^+} f(x) = m$. Jump, rather than removable, *i.e.*, $m \nsucceq M$: tideed, if M=f(a-)=f(a+)=m, then since $f(a-) \leq f(a) \leq f(a+)$, we have f(a -) = f(a) = f(a+), when $\lim_{x \to a} f(x) = \lim_{x \to a} equals$ f(a); $\lim_{x \to a} \frac{1}{16}$, $f(x) = \lim_{x \to a} \frac{1}{16}$, \int whence ヘロト ヘポト ヘヨト ヘヨト

Discontinuities of Monotone Functions The Derivative

The Derivative: Definition

Definition

Let *I* be an interval of real numbers, let $f : I \rightarrow \mathbb{R}$, and suppose $a \in I$ is an interior point. If the limit

$$\int (a) := \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

exists, then *f* is said to be *differentiable at a*, and the limiting value is denoted by f'(a) and called the *derivative of f at a*. If *I* is an open interval, and if *f* is differentiable at every $a \in I$, then we say *f* is *differentiable on I*.

The Derivative: Properties

Remark.

$$\frac{f(x) - f(a)}{x - a} = \frac{f(a + h) - f(a)}{h},$$

if we set $h := x - a$. Also, $|h| < \delta \Leftrightarrow |x - a| < \delta$. We say this
means $h \to 0 \Leftrightarrow x \to a$ and
$$\lim_{h \to 0} \frac{f(a + h) - f(a)}{h} = \lim_{x \to a} \frac{f(x) - f(a)}{x - a},$$

meaning: when one of the limits exists, the other exists and equals the first one.

Examples

1.
$$f(x) = mx + b, m, b \in \mathbb{R}, f : \mathbb{R} \to \mathbb{R}.$$

2. $f(x) = |x|.$
1. $\lim_{x \to a} \frac{mx + b - (ma + b)}{x - a} = \lim_{x \to a} \lim_{x \to a} \frac{1}{x - a} = \lim_{x \to a} \lim_{x \to a$