
Math 5615 Honors: Discontinuities of
Monotone Functions

The Derivative

Sasha Voronov

University of Minnesota

November 16, 2020



Discontinuities of Monotone Functions
The Derivative

Reminder: Classification of Discontinuities
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Discontinuities of Monotone Functions
The Derivative

Discontinuities of Monotone Functions

Definition
Let f : I ! R where I is an interval. Then
1. f is monotone (strictly) increasing on I if x1 < x2 implies
f (x1)  f (x2), (f (x1) < f (x2), resp.);
2. f is monotone (strictly) decreasing on I if x1 < x2 implies
f (x1) � f (x2) (f (x1) > f (x2), resp.).

Theorem
Monotone functions on an open interval I have discontinuities
only of the first kind, more specifically, jump discontinuities.
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Discontinuities of Monotone Functions
The Derivative

Countability of the set of discontinuities of a monotone
function

Corollary
A monotone function on an open interval I has at most
countably many discontinuities.

Proof of Corollary. For each discontinuity, choose a rational
number in the “jump interval.” This gives an injective map from
the set of discontinuities in I to Q.
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Discontinuities of Monotone Functions
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Proof of Theorem on Discontinuities of a Monotone
Function

WLOG assume f is monotone increasing. Let a 2 I. Then
f (x)  f (a) for all x < a. Thus, the set

L := {f (x) | x < a}

is bounded above. Let M := sup L. If " > 0, then there exists
p 2 I such that p < a and

0  M � f (p) < ".

Otherwise, if 8p < a, M � f (p) � ", then M � " would be a
smaller upper bound for L.
Then whenever p < x < a, we have f (p)  f (x)  M and so

0  M � f (x) < ".

Therefore, f (a�) = limx!a� f (x) exists and equals M.
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Proof of Theorem, Concluded

Right-hand limit: The set R := {f (x) | x > a} is bounded
below, let m := inf R. Then, similarly, limx!a+ f (x) = m.

Jump, rather than removable, i.e., m < M:
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Discontinuities of Monotone Functions
The Derivative

The Derivative: Definition
Idea: The derivative = instantaneous slope

Definition
Let I be an interval of real numbers, let f : I ! R, and suppose
a 2 I is an interior point. If the limit

lim
x!a

f (x)� f (a)
x � a

exists, then f is said to be differentiable at a, and the limiting
value is denoted by f 0(a) and called the derivative of f at a. If I
is an open interval, and if f is differentiable at every a 2 I, then
we say f is differentiable on I. 7 / 10
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The Derivative: Properties
Remark.

f (x)� f (a)
x � a

=
f (a + h)� f (a)

h
,

if we set h := x � a. Also, |h| < � , |x � a| < �. We say this
means h ! 0 , x ! a and

lim
h!0

f (a + h)� f (a)
h

= lim
x!a

f (x)� f (a)
x � a

,

meaning: when one of the limits exists, the other exists and
equals the first one.

Examples
1. f (x) = mx + b, m, b 2 R, f : R ! R.
2. f (x) = |x |.
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