# Math 5615 Honors:The Derivative 

Sasha Voronov<br>University of Minnesota

November 18, 2020

## Reminder: The Derivative

## Definition

Let $I$ be an interval of real numbers, let $f: I \rightarrow \mathbb{R}$, and suppose $a \in I$ is an interior point. If the limit

$$
\frac{d f}{d x}(a):=f^{\prime}(a):=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h},
$$

exists, then $f$ is said to be differentiable at a, and the limiting value is denoted by $f^{\prime}(a)$ and called the derivative of $f$ at a. If $I$ is an open interval, and if $f$ is differentiable at every $a \in I$, then we say $f$ is differentiable on $l$.

Differentiability and Continuity
Theorem
Let $f: I \rightarrow \mathbb{R}$ and let $a \in I$ be an interior point of $I$. If $f^{\prime}(a)$ exists, then $f$ is continuous at a.

Proof.

$$
\begin{aligned}
& f(x)-f(a)=\frac{f(x)-f(a)}{x-a} \cdot(x-a) \\
& \forall x \in I, x \neq a \\
& \lim _{x \rightarrow a}(f(x)-f(a))=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \cdot \lim _{x \rightarrow a}(x-a) \\
& =f^{\prime}(a) \cdot 0=0 \Rightarrow f(x) \text { is } \\
& \text { continuous at } a .0
\end{aligned}
$$

Continuity and Differentiability, Continued
Differentiability at a points is strictly stronger than continuity at a point: e.g., $f(x)=|x| . \quad|x|^{\prime}(0)$ doesh't exist, but $|x|$ is courts
Example
If $g$ is differentiable at $x$ and $g(x) \neq 0$, then by continuity at $x$

$$
\begin{aligned}
& \left(\frac{1}{g(x)}\right)^{\prime}=\lim _{h \rightarrow 0} \\
& \frac{g(x-h)}{h}-\frac{1}{g(x)} \\
& g(x+h) \neq 0 \\
& \text { hor this stuff. } \\
& \text { small } \\
& =\lim _{h \rightarrow 0} \frac{1}{g(x+h) g(x)} \cdot \frac{g(x)-g(x+h)}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{g(x+h) g(x)} \cdot\left(-\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h}\right) \\
& =\frac{1}{g(x)^{2}}\left(-g^{\prime}(x)\right)=-\frac{g^{\prime}(x)}{(g(x))^{2}}
\end{aligned}
$$

Concrete Exampe: $\cot ^{\prime} x$
Example
Let us compute $\cot ^{\prime} x$ using the derivative $\tan ^{\prime} x=\sec ^{2} x=1 / \cos ^{2} x$ of $\tan x$ :

$$
\begin{aligned}
& \cot ^{\prime} x=\left(\frac{1}{\tan x}\right)^{\prime}=-\frac{\tan ^{1} x}{(\tan x)^{2}} \\
& =-\frac{\sec ^{2} x}{\tan ^{2} x}=\frac{-1 / \cos ^{2} x}{\sin ^{2} x / \cos ^{2} x}=-\frac{1}{\sin ^{2} x} \\
& =-\csc ^{2} x
\end{aligned}
$$

## The Product and Quotient Rules

## Theorem

Suppose $f$ and $g$ are real valued functions defined in an open interval about $a$. If $f$ and $g$ are both differentiable at a, then
(1) $f \pm g$ is differentiable at a and $(f \pm g)^{\prime}(a)=f^{\prime}(a) \pm g^{\prime}(a)$;
(2) The product function $(f g)(x):=f(x) g(x)$ is differentiable at $a$ and $(f g)^{\prime}(a)=f^{\prime}(a) g(a)+f(a) g^{\prime}(a)$;
(3) If $g(a) \neq 0$, the quotient function $(f / g)(x):=f(x) \gamma g(x)$ is differentiable at a and $(f / g)^{\prime}(a)=\frac{f^{\prime}(a) g(a)-f(a) g^{\prime}(a)}{(g(a))^{2}}$.

Proof: The product rule.

$$
\frac{f(x) g(x)-f(a) g(a)}{x-a}=\frac{f(x) g(x)-f(a) g(x)+f(a) g(x)-f(a) g a)}{x-a}
$$

Continuations of the Proofs

$$
=\frac{f(x)-f(a)}{x-a} g(x)+f(a) \frac{g(x \mid-g(a)}{x-a} \underset{x \rightarrow a}{\longrightarrow} f^{\prime}(a) g(a)+f(a) g^{\prime}(a)
$$

The quotient rule:
To differentiate $\frac{f(x)}{g(x)}$, use product rule for $f(x) \cdot \frac{1}{g(x)}: f(x) \& \frac{1}{g(x)}$ are difftble at a,

$$
\begin{align*}
& \left(f(x) \cdot \frac{1}{g(x)}\right) \int_{x=a}^{\prime}=f^{\prime}(a) \frac{1}{g(a)}+f(a) \cdot\left(\frac{1}{g(x)}\right)_{x=a}^{)^{\prime}} \\
& =f^{\prime}(a) / g(a)+f(a)\left(-\frac{g^{\prime}(a)}{(g(a))^{2}}\right) \\
& =\frac{f^{\prime}(a) g(a)-f(a) g^{\prime}(a)}{(g(a))^{2}}
\end{align*}
$$

The Derivative of a Composite Function
Remark. A function $f$ is differentiable at lift there is a number $L$ such that the quotient

$$
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)-L h}{h}=0
$$

In this case $L=f^{\prime}(a)$. Set $V(h):=\frac{f(a+h)-f(a)-L h}{h}$. Then

$$
V(h) \rightarrow 0 \text { and } f(a+h)=f(a)+L h+V(h) h
$$

$$
\begin{aligned}
& V(h) \rightarrow 0 \text { and } f(a+h)=t(a)+L h+V(h) h . \\
& f^{\prime}(a) \operatorname{excs} t s \Rightarrow \lim _{h} \Rightarrow \frac{f(a+h)-f(a)-f^{\prime}(a) h}{h} \\
& =\lim _{h \rightarrow 0}\left(\frac{f(a+h)-f(a)}{h}\right)-f^{\prime}(a)=f(1 a)-f^{\prime}(a)=0,
\end{aligned}
$$

If for some $L \in \mathbb{R}$, 促。 $\frac{(1+a+h)-f(c)-L h}{h}=0$
then $\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)-L h+L h}{h}$

$$
\begin{aligned}
& \text { Hen } \lim _{h \rightarrow 0} \frac{f(a+h)}{h}=\lim _{h \rightarrow 0} \frac{\lim _{h \rightarrow 0}}{h} \frac{f(a)-L h}{h}+0+L=L \\
& =\lim _{h}(a)
\end{aligned}
$$

The Proof of the Chain Rule
Theorem (Chain Rule)
Let I and $J$ be open intervals. If $f: I \rightarrow J$ is differentiable at $a \in I$ and $g: J \rightarrow \mathbb{R}$ is differentiable at $f(a) \in J$, then the composition $(g \circ f)(x):=g(f(x))$ is differentiable at $a \in I$ and

$$
(g \circ f)^{\prime}(a)=g^{\prime}(f(a)) f^{\prime}(a) .
$$

Proof. $\quad h=x-a, x=a+h, H=f(x)-f(a) \in \mathbb{R}$
$f^{\prime}(a)$ exists $\Rightarrow f^{\prime}(x)-f(a)=f^{\prime}(a) h+v(h) h$ where $V(R) \underset{\rightarrow H \in(\mathbb{R}, \sin , f(a)+H \in T}{\rightarrow} 0$.
$g^{\prime}(f(a))$ exists $\Rightarrow \neq \forall g(f(a)+H)=g(f(a))+g^{\prime}(f(a)) H$

$$
\begin{aligned}
& t W(H) H \text { for sore W(H) } \rightarrow 0 \text { as } H \rightarrow 0 \\
& \text { Then } g(f(x))=g(f(a)+H)=g(f(a))+g^{\prime}(f(a))\left(f^{\prime}(a) h+V(h) h\right)
\end{aligned}
$$

$+W(H) H$ for sone $W(H) \rightarrow 0$ as $H \rightarrow 0$

The Proof of the Chain Rule, Continued

$$
\begin{aligned}
& +w(H)\left(f^{\prime}(a) h+V(h) h\right) \\
& =g(f(a))+g^{\prime}(f(a)) f^{\prime}(a) h \\
& +h\left(g^{\prime}(f(a)) V(h)+w(H) f^{\prime}(a)+V(h)\right) . \\
& \quad \text { Since } g^{\prime}(f(a)) V(h)+W(H) f^{\prime}(a)+V(h)
\end{aligned}
$$

$\rightarrow 0, b / c \quad V(h) \rightarrow 0^{\circ}$, and ash>0)

$$
\begin{aligned}
& \text { ash >0) } \\
& \text { W }(H \mid=W(f(a+h)-f(a)) \rightarrow 0, \\
& \text { because }\left(f ( a + h ) - f ( a ) \rightarrow 0 \text { as } f \left(s^{\prime} f\right.\right.
\end{aligned}
$$

because $p(a+h)-f(a) \rightarrow 0$ as $f$ s ascots and $W(H) \rightarrow 0$ as $H \rightarrow 0$.

