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Differentiabily and continuity

Reminder: The Derivative

Definition
Let / be an interval of real numbers, let f : I — R, and suppose
a € | is an interior point. If the limit

a a) := f'(a) := lim o9 = WY _ i, ME- 1) = M)

dx x—»a X—a h—0 h ’
exists, then f is said to be differentiable at a, and the limiting
value is denoted by f'(a) and called the derivative of f at a. If |
is an open interval, and if f is differentiable at every a € /, then
we say f is differentiable on |.
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Differentiabily and continuity

Differentiability and Continuity

Letf: 1 — R and let a € | be an interior point of I. If f'(a) exists,
then f is continuous at a.
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Differentiabily and continuity

Continuity and Differentiability, Continued

leferennablllty at a points is strlctlg stronger than continuity at a

point: 9., f(x) = [x|. [ (0) deesht 2hat bt xksw(b

If g is differentiable at x and g(x) # 0, then by continuity at x
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Differentiabily and continuity

Concrete Exampe: cot’ x

Let us compute cot’ x using the derivative
tan’ x = sec® x = 1/ cos? XoftanX
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Rules of Differentiation

The Product and Quotient Rules

Suppose f and g are real valued functions defined in an open
interval about a. If f and g are both differentiable at a, then
@ f + g is differentiable at a and (f + g)'(a) = f'(a) + g'(a);
@ The product function (fg)(x) := f(x)g(x) is differentiable at
a and (fg)'(a) = f'(a)g(a) + f(a)g'(a);
©Q Ifg(a) # 0, the quotient function (f/g)(x) := f(x)ﬁ(x) is

differentiable at a and (f/g)'(a) = f(a)g((?(a;)(g) @,

Proof: The product rule.
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Rules of Differentiation

Continuations of the Proofs
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Rules of Differentiation

The Derivative of a Composite Function
[F2
Remark. A function f is differentiable at a¥ there is a number L
such that the quotient

f(a+ h) — f(a) — Lh
thO h
In this case L = f(a). Set V(h) := [(@tN-NA-L" Thepn
V(h) — 0 and f(a+ h) = f(a) + Lh+ V(h)h. v
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Rules of Differentiation

The Proof of the Chain Rule

Theorem (Chain Rule)

Let I and J be open intervals. If f : | — J is differentiable at
ae landg: J — R is differentiable at f(a) € J, then the
composition (g o f)(x) := g(f(x)) is differentiable at a € | and

(gof)(a) = d'(f(a)f(a).
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The Proof of the Chain Rule, Continued
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