Math 5615 Honors: The Derivative

Sasha Voronov

University of Minnesota

November 18, 2020

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

Reminder: The Derivative

Definition

Let *I* be an interval of real numbers, let $f : I \rightarrow \mathbb{R}$, and suppose $a \in I$ is an interior point. If the limit

$$\frac{df}{dx}(a):=f'(a):=\lim_{x\to a}\frac{f(x)-f(a)}{x-a}=\lim_{h\to 0}\frac{f(a+h)-f(a)}{h},$$

exists, then *f* is said to be *differentiable at a*, and the limiting value is denoted by f'(a) and called the *derivative of f at a*. If *I* is an open interval, and if *f* is differentiable at every $a \in I$, then we say *f* is *differentiable on I*.

Differentiability and Continuity

Theorem

Let $f : I \to \mathbb{R}$ and let $a \in I$ be an interior point of I. If f'(a) exists, then f is continuous at a.

Proof.

Continuity and Differentiability, Continued

Differentiability at a points is strictly stronger than continuity at a point: e.g., f(x) = |x|. $|x|^{1}(0)$ does n't exist but |x| is call

Example

If g is differentiable at x and $g(x) \neq 0$, then by continuity at x

Concrete Exampe: cot' x

Example

Let us compute $\cot' x$ using the derivative $\tan' x = \sec^2 x = 1/\cos^2 x$ of $\tan x$: $\cot' x = (\frac{1}{\tan x})^1 = -\frac{\tan' x}{(\tan x)^2}$ $= -\frac{\sec^2 x}{\tan^2 x} = \frac{-\sqrt{\cos^2 x}}{\sin^2 x/\cos^2 x} = -\frac{1}{\sin^2 x}$ $= -\csc^2 x$

The Product and Quotient Rules

Theorem

Suppose f and g are real valued functions defined in an open interval about a. If f and g are both differentiable at a, then

- $f \pm g$ is differentiable at a and $(f \pm g)'(a) = f'(a) \pm g'(a)$;
- 2 The product function (fg)(x) := f(x)g(x) is differentiable at a and (fg)'(a) = f'(a)g(a) + f(a)g'(a):
- If $g(a) \neq 0$, the quotient function (f/g)(x) := f(x)g(x) is differentiable at a and $(f/g)'(a) = \frac{f'(a)g(a) f(a)g'(a)}{(g(a))^2}$.

Proof: The product rule.

$$\frac{x) q(x) - f(a) q(a)}{x - a} = \frac{f(x) q(x) - f(a) q(x) + f(a) q(x) + f(a) q(x)}{x - a}$$

> Cal Barris

Continuations of the Proofs

$$=\frac{f(x)-f(a)}{x-a}g(x)+f(a) \xrightarrow{g(x)-g(a)}{x-a} \xrightarrow{f^{1}(a)}g(a)+f(a)g(a)$$

The Derivative of a Composite Function

Remark. A function f is differentiable at a if there is a number L such that the quotient

$$\lim_{h \to 0} \frac{f(a+h) - f(a) - Lh}{h} = 0.$$
In this case $L = f'(a)$. Set $V(h) := \frac{f(a+h) - f(a) - Lh}{h}$. Then
$$V(h) \to 0 \text{ and } f(a+h) = f(a) + Lh + V(h)h.$$

$$f'(a) = \chi_{15} f(a) = \int_{a}^{b} \int$$

The Proof of the Chain Rule

Theorem (Chain Rule)

Let I and J be open intervals. If $f : I \to J$ is differentiable at $a \in I$ and $g : J \to \mathbb{R}$ is differentiable at $f(a) \in J$, then the composition $(g \circ f)(x) := g(f(x))$ is differentiable at $a \in I$ and

 $(g \circ f)'(a) = g'(f(a))f'(a).$

Proof. $h_s = \chi_{-a} \quad \chi = a + b, \quad H = f(\chi) - f(a) \in H$ $f'(a) \quad e_{\chi ists} \Rightarrow f(\chi) - f(a) = f'(a)b + V(b)b$ where $V(b) \rightarrow 0$ as f(x) - f(a) = g(f(a)) + g'(f(a))H $g'(f(a)) \quad e_{\chi ists} =) + g(f(a) + H) = g(f(a)) + g'(f(a))H$ $+ W(H)H \quad for some \quad W(H) \rightarrow 0 \quad as H \rightarrow 0$ $g(f(\chi)) = g(f(a) + H) = g(f(a)) + g'(f(a)) \quad (f'(a) + V(b))$ $g(f(\chi)) = g(f(a) + H) = g(f(a)) + g'(f(a)) \quad (f'(a) + V(b))$

The Proof of the Chain Rule, Continued

+ W(H)(f'(a)h + V(h)h)= q(f(a)) + q'(f(a)) f(a) h+ $h\left(q'(f(a))V(h) + W(H)f'(a) + V(h)\right)$ Since q'(f(a))V(h) + W(H)f'(a) + V(h)ashoo) b/c V(h) ro and W(H)=W(f(a+h)-f(a)) > 0, because f(a+h)-f(a) > 0 as f is costs and w(H)-roas H-ro. [] 10/10