Math 5615 Honors: Applications of the Derivative to Analysis

Sasha Voronov

University of Minnesota

November 20, 2020

Relative extrema

Definition

Let $f : (a, b) \to \mathbb{R}$. 1. The function f has a *relative (local) maximum* at a point $x \in (a, b)$ if there is a $\delta > 0$ such that $f(s) \le f(x)$ for all $s \in (x - \delta, x + \delta)$. The *relative (local) maximum value* is then f(x). 2. The function f has a *relative (local) minimum* at a point $x \in (a, b)$ if there is a $\delta > 0$ such that $f(s) \ge f(x)$ for all $s \in (x - \delta, x + \delta)$. The *relative (local) minimum value* is then f(x).

3. A relative extremum is a relative maximum or minimum.

Relative extrema and critical points

The derivative is a great tool to find extrema:

Theorem-Definition

If $f : (a, b) \to \mathbb{R}$ and f has either a relative extremum at $c \in (a, b)$, and if f'(c) exists, then c is a *critical point* of f, *i.e.*, f'(c) = 0.

Proof. I has a rel. max. at CE(a, b) (WLOG); $f(x) = f(x) - f(c) \le 0$ X>C, O<X-C<8, we have $-f(c) < 0 \implies lim$ exists,61 OCC-XCO HIXI-HO

Rolle's Theorem

The following particular case of the mean value theorem easily follows from the previous theorem on extrema and critical pts.

Theorem (Rolle)

Let $f : [a, b] \to \mathbb{R}$ be continuous on [a, b] and differentiable on the open interval (a, b). If f(a) = f(b), then there is a point $c \in (a, b)$ such that f'(c) = 0.

Proof.

If
$$f = \text{const}$$
, done, as $f'(c) = 0$ at each point $c \in (a, b)$.

If not constant, then there must be $x \in (a, b)$ such that $f(x) \neq f(a)$. The_nf(x) > f(a) = f(b) or f(x) < f(a) = f(b). Since f is continuos, it attains an absolute maximum at some $c_1 \in [a, b]$ and an absolute minimum at $c_2 \in [a, b]$. If f(x) > f(a), then $c_1 \in (a, b)$. Then $f'(c_1) = 0$ by previous theorem. If f(x) < f(a), then $c_2 \in (a, b)$ and $f'(c_2) = 0$ by previous theorem.

Illustration and Example

What if

Mean Value Theorem

Theorem

Let $f : [a, b] \to \mathbb{R}$ be continuous on [a, b] and differentiable on the open interval (a, b). Then there is a point $c \in (a, b)$ such that

$$f'(c)=rac{f(b)-f(a)}{b-a}.$$

Proof. Geometric intuition helps: the equation of the line through (a, f(a)) and (b, f(b)) is

$$y = f(a) + \frac{f(b) - f(a)}{b - a}(x - a).$$

Consider

$$h(x) := f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a).$$

Then h(a) = h(b), conts on [a, b], diffible on (a, b) and Rolle's theorem applies: $\exists c \in (a, b)$; h'(c) = 0but $h'(c) = f'(c) - \frac{f(b) - f(a)}{b - a}$, l = 0

Theorem

Let $f : [a, b] \to \mathbb{R}$ be continuous on [a, b] and differentiable on the open interval (a, b). Then 1. If $|f'(x)| \le M \ \forall x \in (a, b)$ then

$$|f(x)-f(a)| \leq M(x-a) \leq M(b-a);$$

2. If $f'(x) = 0 \ \forall x \in (a, b)$, then f is constant;

3. If $f'(x) \ge 0 \ \forall x \in (a, b)$, then f is increasing. If $f'(x) > 0 \ \forall x \in (a, b)$, then f is strictly increasing;

4. If $f'(x) \le 0 \ \forall x \in (a, b)$, then f is decreasing. If $f'(x) < 0 \ \forall x \in (a, b)$, then f is strictly decreasing.

Proof

1. Apply MVT: $\exists C \in (a_1 X) : f'(c) = \frac{f(x) - f(c)}{x - a}$ Then $|f(x) - f(a)| = |f'(c)| (x-a) \le M(x-a)$ 2. \forall s, t \in ta, b], s < t, wat f(s) = f(t). MVT \Rightarrow f(t)-f(s) = f'(c) (t-s) = 0 for some c'. SLCLT. 3, $\forall s, f \in ta, b; s \geq t$, want $f(s) \leq f(t)$ nvt $f(t) - f(s) = f'(c)(t-s) \geq O(or > 0)$ 4, Similar to 3.

An example of diffble f(x) such that f'(c) > 0 at some $c \in (a, b)$ does not imply that f(x) is increasing on an interval about c will be on the homework: $f(x) = x^2 \sin \frac{1}{x}$ for c = 0.

