Math 5615 Honors: Applications of the Derivative to Analysis

Sasha Voronov

University of Minnesota
November 20, 2020

Relative extrema

Definition

Let $f:(a, b) \rightarrow \mathbb{R}$.

1. The function f has a relative (local) maximum at a point $x \in(a, b)$ if there is a $\delta>0$ such that $f(s) \leq f(x)$ for all
$s \in(x-\delta, x+\delta)$. The relative (local) maximum value is then $f(x)$.
2. The function f has a relative (local) minimum at a point $x \in(a, b)$ if there is a $\delta>0$ such that $f(s) \geq f(x)$ for all $s \in(x-\delta, x+\delta)$. The relative (local) minimum value is then $f(x)$.
3. A relative extremum is a relative maximum or minimum.

Examples: $\sin x, x \sin x,|x|$

Relative extrema and critical points
The derivative is a great tool to find extrema:
Theorem-Definition
If $f:(a, b) \rightarrow \mathbb{R}$ and f has either a relative extremum at $c \in(a, b)$, and if $f^{\prime}(c)$ exists, then c is a critical point of f, i.e., $f^{\prime}(c)=0$.
Proof. f has a rel. max, at $c \in(a, b)$ (FLOC $)$.
$\exists \delta>0:|x-c|<\delta \Rightarrow f(x)-f(c) \leq 0$
For $x>c, 0<x-c<\delta$, we have

$$
\frac{f(x)-f^{\prime}(c)}{x-c} \leq 0 \Rightarrow \lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c} \leqslant 0
$$

The $\lim _{x \rightarrow c}$ exists, $b / c \lim _{x \rightarrow c} \frac{f(x)-\vec{f}(c)}{x-c}=f^{\prime}(c)$. Then $\lim _{x \rightarrow c} \frac{f(x) f(c)}{x-c}$
For $\left.x<c \quad 0<c-x<\delta \quad f(x)-1-c(c) \geqslant 0 \Rightarrow \lim \frac{f(x)-f(c)}{x}\right)=\lim _{x \rightarrow c}=\frac{l(x)-f(c)}{x-c}$
For $x<c, 0<c-x<0, \frac{f(x)-f(c)}{x-c} \geqslant 0 \Rightarrow \lim _{x \rightarrow c}-x-c \geqslant 0 \stackrel{x}{x} f^{\prime}(c)$ Thus, $0 \leqslant f^{\prime}(c) \leqslant 0 \Rightarrow{ }^{x-c} f^{\prime}(c)=0^{x-c}$

Rolle's Theorem

The following particular case of the mean value theorem easily follows from the previous theorem on extrema and critical pts.

Theorem (Rolle)

Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous on $[a, b]$ and differentiable on the open interval (a, b). If $f(a)=f(b)$, then there is a point $c \in(a, b)$ such that $f^{\prime}(c)=0$.

Proof.

If $f=$ const, done, as $f^{\prime}(c)=0$ at each point $c \in(a, b)$.
If not constant, then there must be $x \in(a, b)$ such that $f(x) \neq f(a)$. Then $f(x)>f(a)=f(b)$ or $f(x)<f(a)=f(b)$. Since f is continuos, it attains an absolute maximum at some $c_{1} \in[a, b]$ and an absolute minimum at $c_{2} \in[a, b]$. If $f(x)>f(a)$, then $c_{1} \in(a, b)$. Then $f^{\prime}\left(c_{1}\right)=0$ by previous theorem. If $f(x)<f(a)$, then $c_{2} \in(a, b)$ and $f^{\prime}\left(c_{2}\right)=0$ by previous theorem.

Illustration and Example

target's slope $=$ inst. rate of change of $f(x)$ at $x=c$. Slope $=f^{\prime}\left(c_{1}\right)=0$ chord, slope $=$ average rate of change of $f(x)$ on $[a, b]=\frac{f(b)-f(a)}{b-a}=0$
what if

Mean Value Theorem

Theorem

Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous on $[a, b]$ and differentiable on the open interval (a, b). Then there is a point $c \in(a, b)$ such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Proof of MVT

Proof. Geometric intuition helps: the equation of the line through $(a, f(a))$ and $(b, f(b))$ is

$$
y=f(a)+\frac{f(b)-f(a)}{b-a}(x-a)
$$

Consider

$$
h(x):=f(x)-f(a)-\frac{f(b)-f(a)}{b-a}(x-a)
$$

Then $h(a)=h(b)$, cons on $[a, b]$, diffble on (a, b) and Rolle's theorem applies: $\exists c \in(a, b): \quad h^{\prime}(c)=0$
But $h^{\prime}(c)=f^{\prime}(c)-\frac{f(b)-f(a)}{b-a} \cdot 1=0$

Monotone Functions and Derivative

Theorem

Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous on $[a, b]$ and differentiable on the open interval (a, b). Then

1. If $\left|f^{\prime}(x)\right| \leq M \forall x \in(a, b)$ then

$$
|f(x)-f(a)| \leq M(x-a) \leq M(b-a)
$$

2. If $f^{\prime}(x)=0 \forall x \in(a, b)$, then f is constant;
3. If $f^{\prime}(x) \geq 0 \forall x \in(a, b)$, then f is increasing. If $f^{\prime}(x)>0 \forall x \in(a, b)$, then f is strictly increasing;
4. If $f^{\prime}(x) \leq 0 \forall x \in(a, b)$, then f is decreasing. If $f^{\prime}(x)<0 \forall x \in(a, b)$, then f is strictly decreasing.

Proof

1. Apply MVT: $\exists c \in(a, X): f^{\prime}(c)=\frac{f(x)-f(a)}{x-a}$

Then $\mid f\left(x|-f(a)|=\left|f^{\prime}(c)\right|(x-a) \leq M(x-a)\right.$
2. $\forall s, t \in[a, b], s<t$, want $f(s)=f(t)$

MVT $\Rightarrow f(t)-f(s)=f^{\prime}(c)(t-s)=0$
for some $c: \quad s<c<t$.
3, $\forall s, t \in[a, b\}, s<t$, want $f(s)_{(o x<)} f(t)$ mut $f(t)-f(s)=f^{\prime}(c)(t-s) \geqslant 0$ (or >0) 4. 5 similar to 3 .

Illustration and Example

An example of diffble $f(x)$ such that $f^{\prime}(c)>0$ at some $c \in(a, b)$ does not imply that $f(x)$ is increasing on an interval about c will be on the homework: f for $c=0$.

$$
\begin{gathered}
f(x)^{2}=x^{2} \sin \frac{1}{x}+\frac{x}{2} \\
\left(\text { Sorry, }\left.\left(x^{2} \sin \frac{1}{x}\right)^{\prime}\right|_{x=0}=0 .\right)
\end{gathered}
$$

