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Darboux’s Theorem

Geometric Interpretation of Mean Value Theorem

Darboux’s Theorem

If a function f has a derivative f 0 on an open interval, f 0 does not

have to be continuous, but it has shares one property with

continuous functions: the intermediate value theorem.

Theorem (Darboux)

Let I be an open interval of the real line, and suppose f : I ! R
is a differentiable function. Then f 0 has the following
intermediate value property on I: If a, b 2 I with a < b and
f 0(a) 6= f 0(b), then for any number m between f 0(a) and f 0(b),
there is a point c 2 (a, b) ⇢ I such that f 0(c) = m.

Proof.
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Darboux’s Theorem

Geometric Interpretation of Mean Value Theorem

Proof of Darboux’s Theorem, Continued
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Darboux’s Theorem

Geometric Interpretation of Mean Value Theorem

Examples

1. f (x) =

(
x2 sin 1

x if x 6= 0,

0 if x = 0

is differentiable on R. But f 0(x) = 2x sin 1

x � cos 1

x for x 6= 0 does

not have a limit as x ! 0, and therefore f 0(x) is not continuous

at 0. Thus, f 0 could be not continuous, but it still satisfies the

intermediate value theorem.

2. g(x) = f (x) + x/2 has g0(0) = 1/2 > 0 but not increasing on

any interval about 0. Nevertheless, g(x) < g(0) for all small

enough x < 0 and g(0) < g(x) for all small enough x > 0.

3. Darboux’s theorem implies: no jump discontinuities for f 0(x).
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Darboux’s Theorem

Geometric Interpretation of Mean Value Theorem

Cauchy’s Mean Value Theorem (MVT)

MVT: If f is conts on [a, b] and diffble on (a, b), then at some

c 2 (a, b),

f 0(c) =
f (b)� f (a)

b � a
.

The tangent vector to the curve with parametric equations

x = t , y = f (t) (the graph of y = f (x)) at point c is (1, f 0(c)) is

parallel to the vector (b � a, f (b)� f (a)) from (a, f (a)) to

(b, f (b)), because the slopes are equal:

f 0(c)
1

=
f (b)� f (a)

b � a
.
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Darboux’s Theorem

Geometric Interpretation of Mean Value Theorem

Cauchy’s Mean Value Theorem (MVT)

A more general plane curve would be given by parametric

equations x = g(t), y = f (t). The tanget vector at point t = c is

(g0(c), f 0(c)), whereas the vector from (g(a), f (a)) to

(g(b), f (b)) is (g(b)� g(a), f (b)� f (a)). Will there be a point c
at which they are parallel:

f 0(c)
g0(c)

=
f (b)� f (a)
g(b)� g(a)

?

Theorem

Let f , g : [a, b] ! R be continuous on [a, b] and differentiable on
the open interval (a, b) and such that f 0(x) and g0(x) are not
both equal to 0 at any x 2 (a, b) and g(b) 6= g(a). Then there is
a point c 2 (a, b) such that

f 0(c)
g0(c)

=
f (b)� f (a)
g(b)� g(a)

.
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Darboux’s Theorem

Geometric Interpretation of Mean Value Theorem

Proof of Cauchy’s MVT

Proof. As in the proof of MVT, consider

h(x) := f (x)� f (a)� f (b)� f (a)
g(b)� g(a)

(g(x)� g(a)).

Then h(a) = h(b) = 0, conts on [a, b], diffble on (a, b) and

Rolle’s theorem applies:
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