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Darboux’s Theorem

Darboux’s Theorem

If a function f has a derivative f on an open interval, f' does not
have to be continuous, but it has shares one property with
continuous functions: the intermediate value theorem.

Theorem (Darboux)

Let | be an open interval of the real line, and suppose f : | — R
is a differentiable function. Then f' has the following
intermediate value property on I: If a,b € | with a < b and
f'(a) # f'(b), then for any number m between f'(a) and f'(b),
there is a point ¢ € (a, b) C | such that f'(c) = m.
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Darboux’s Theorem

Proof of Darboux’s Theorem, Continued
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Darboux’s Theorem

Examples

x%sinl ifx #£0,
1. f(x):{o X fx 0

is differentiable on R. But f/(x) = 2xsin 1 — cos 1 for x # 0 does
not have a limit as x — 0, and therefore f'(x) is not continuous
at 0. Thus, ' could be not continuous, but i still satisfies the
intermediate value theorem. ( e catl QY e
(c‘m& Al o)=0) o |K>
2. g(x) = f(x) + x/2 has g’(0) = 1/2 > 0 but not increasing on
any interval about 0. Nevertheless, g(x) < g(0) for all small
enough x < 0 and g(0) < g(x) for all small enough x > 0. oo}
o “x
3. Darboux’s theorem implies: no jump discontinuities for f'(x).
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“Mean Value Theorem (MVT)

MVT: If f is conts on [a, b] and diffble on (a, b), then at some
ce€ (a,b),
f(b) — f(a)
f(c) = ——>~.
(c) b a
The tangent vector to the curve with parametric equations
x =t, y = f(t) (the graph of y = f(x)) at point cis (1, f'(c)) is
parallel to the vector (b — a, f(b) — f(a)) from (a, f(a)) to
(b, f(b)), because the slopes are equal:
f'(c) _ f(b) —f(a)
l} Q}‘(&) 1 b—a
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Cauchy’s Mean Value Theorem (MVT)

A more general plane curve would be given by parametric
equations x = g(t), y = f(t). The tanget vector at pointt = c is
(d'(c), f'(c)), whereas the vector from (g(a), f(a)) to

(g(b), f(b))is (g(b) — g(a), f(b) — f(a)). Will th(e\r pe a point ¢
at which they are parallel: @(é),{f(@ﬁ)

Letf,g : [a, b] — R be continuous on [a, b] and differentiable on
the open interval (a, b) and such that f'(x) and g'(x) are not
both equal to 0 at any x € (a, b) and g(b) # g(a). Then there is
a point ¢ € (a, b) such that

f'(c)  f(b) —f(a)
g'(c) g(b)—g(a) 69




Proof of Cauchy’s MVT
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Then h(a) = h(b) = 0, conts on [a, b], diffble on (a, b) and
Rolle’s theorem applies: g c cla L\ «
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