Math 5615 Honors: Taylor's Theorem and Higher-Derivative Test for Relative Extrema

Sasha Voronov

University of Minnesota

November 30, 2020

Higher Derivatives

Suppose $f : I \to \mathbb{R}$ has a derivative f' on an open interval I and f' is also differentiable on I. This derivative (f')' is denoted by f'' and called the *second derivative of f*. If f'' happens to be differentiable on I, we call its derivative $f^{(3)} = f''' := (f'')'$ the *third derivative of function f*. If this process can be iterated, we obtain the *nth derivative*

$$f^{(n)} := (f^{(n-1)})'$$

of f. By convention, $f^{(0)} := f$.

Higher Mean Value Theorem

Lemma (Higher Mean Value Theorem)

Let I be an open interval and let n be a nonnegative integer. Suppose that $f : I \to \mathbb{R}$ has n + 1 derivatives $f', f'', \dots, f^{(n+1)}$ on I, and that at some point a in I,

$$f^{(k)}(a)=0$$
 for $0\leq k\leq n.$

Then for each $x \neq a$ in I, there is a point c in I between a and x such that

$$f(x) = \frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}.$$

Cf. to MVT (n = 0): (if f(a) = 0, f' exists on T) $\frac{f(x) - f(a)}{x - a} = \frac{f(x)}{x - a} = f'(c) \Rightarrow f(x) = \frac{f(c)}{1!}$

4 D b 4 A b

Taylor's Theorem Higher-Derivative Test for Relative Extrema

Proof

Set $g(x) := \frac{1}{(h+1)} (x-\alpha)^{n+1}$. Then for all k; 05k5h $q_{\ell}^{(k)}(a) = 0$ $(g'(x) = \frac{1}{n!} (x-a)^n, etc.)$ $g^{(n)}(x) = x-a, g^{(n+1)}(x) = 1$ Note if $x \pm a_{x \in I, q}(x) \neq 0$, $q'(x) \neq 0$, $q^{(n)}(x) \neq 0$. Apply Cauchy's MVT to f(x) & q(x) on $(a_{x}x)$ (Assume WLOG f(x) = f(c) for some $c_{i} \in (a, x)$ as a_{i} q'(x) = f(c) for some $c_{i} \in (a, x)$ as a_{i}

Taylor's Theorem Higher-Derivative Test for Relative Extrema

Proof

On [a, c,]: a < c, < X, by Cauchy's MVT applied to f'(x), g'(x); J c_2 e(a, c)) s,t. $\frac{f'(c_1)}{g'(c_1)} = \frac{f'(c_1) - f'(a)}{g'(c_1) - g'(a)} = \frac{f''(c_2)}{g''(c_2)}$ $a < C_2 < C_1 < X$ Costime: $f(x) = \frac{f(c_1)}{g(x)} = \frac{f(c_2)}{g(c_1)} = \frac{f(c_2)}{g(c_2)} =$ $f^{(n)}(c_n)$ $f^{(n+i)}(c)$ $= \frac{q^{(u)}(C_u)}{q^{(u+1)}(C)} = q^{(u+1)}(C)$ for some pts $a < c < C_n < C_{n+1} < c < C_2 < C_1$ Note $q^{(n+1)}(c) = 1$. Thus, $f(x)/g(x) = f^{(n+1)}(c)$. \square

Taylor's Theorem with Lagrange Remainder

We define the Taylor polynomial of degree n for f at a point a by

$$P_n(x) := f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \cdots + \frac{f^{(n)}(a)}{n!}(x-a)^n.$$

Theorem (Taylor)

Let I be an open interval containing a and let n be a nonnegative integer. If $f : I \to \mathbb{R}$ has n + 1 derivatives on I, then for any $x \neq a$ in I there is a point c in I between a and x such that

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^n + \frac{f^{(n+1)}(c)}{(n+1)!}(x - a)^{n+1}.$$

Taylor's Theorem Higher-Derivative Test for Relative Extrema

Proof of Taylor's Theorem

Let
$$R_n(x) := f(x) - P_n(x)$$
.
Apply Lemma to $R_n(x)$. Indeed, $R_n(x)$
is $(n+1)$ times diffile on I , $R_n^{(k)}(a) = f^{(n)}(a) - P_n^{(n)}(a)$.
By Lemma $\forall x \in I$ $\exists c in I , betw. $a \leq x$:
 $f(x) - P_n(x) = R_n(x) = \frac{R_n^{(n+1)}(c)}{(n+1)!} (x-a)^{n+1}$
Note $R_n^{(n+1)}(c) = f^{(n+1)}(c) - P_n^{(n+1)}(c)$
 $= f^{(n+1)}(c)$, Thus, $f(x) = P_n(x) + \frac{f^{(n+1)}(c)}{(n+1)!} (x-a)^{n+1}$.$

Taylor's Theorem Higher-Derivative Test for Relative Extrema

The n = 1 Case

Compare

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(c)}{2!}(x - a)^2 + \frac{f''(c)}{2!}(x$$

|n=0|f(x)=f(a)+f'(c)|(xa)

under the hypothesis that f''(x) exists on *I* to

$$f(x) = f(a) + L(x - a) + V(x)(x - a)$$

where L = f'(a) and $\lim_{x\to a} V(x) = 0$ (from an equivalent definition of f'(a) – under hypothesis that f'(a) exists).

under the hypothesis
$$f''(x) = \frac{f''(c)}{2!} (x-a)$$
 with c between
 $A = X$.