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Taylor’s Theorem

Higher-Derivative Test for Relative Extrema

Higher Derivatives

Suppose f : I ! R has a derivative f 0 on an open interval I and

f 0 is also differentiable on I. This derivative (f 0)0 is denoted by f 00
and called the second derivative of f . If f 00 happens to be

differentiable on I, we call its derivative f (3) = f 000 := (f 00)0 the

third derivative of function f . If this process can be iterated,

we obtain the nth derivative

f (n) := (f (n�1))0

of f . By convention, f (0) := f .
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Taylor’s Theorem

Higher-Derivative Test for Relative Extrema

Higher Mean Value Theorem

Lemma (Higher Mean Value Theorem)

Let I be an open interval and let n be a nonnegative integer.
Suppose that f : I ! R has n + 1 derivatives f 0, f 00, . . . , f (n+1)

on I, and that at some point a in I,

f (k)(a) = 0 for 0  k  n.

Then for each x 6= a in I, there is a point c in I between a and x
such that

f (x) =
f (n+1)(c)
(n + 1)!

(x � a)n+1.

Cf. to MVT (n = 0):

f (x)� f (a)
x � a

=
f (x)

x � a
= f 0(c).
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Taylor’s Theorem

Higher-Derivative Test for Relative Extrema

Proof
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Taylor’s Theorem

Higher-Derivative Test for Relative Extrema

Proof
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Taylor’s Theorem

Higher-Derivative Test for Relative Extrema

Taylor’s Theorem with Lagrange Remainder

We define the Taylor polynomial of degree n for f at a point a by

Pn(x) := f (a)+f 0(a)(x�a)+
f 00(a)

2!
(x�a)2+· · ·+ f (n)(a)

n!
(x�a)n.

Notice that the derivatives of Pn and f at a are equal through

order n: P 0
n(x) =

Theorem (Taylor)

Let I be an open interval containing a and let n be a
nonnegative integer. If f : I ! R has n + 1 derivatives on I, then
for any x 6= a in I there is a point c in I between a and x such
that

f (x) = f (a) + f 0(a)(x � a) +
f 00(a)

2!
(x � a)2 + · · ·+ f (n)(a)

n!
(x � a)n

+
f (n+1)(c)
(n + 1)!

(x � a)n+1.
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Taylor’s Theorem

Higher-Derivative Test for Relative Extrema

Proof of Taylor’s Theorem
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Taylor’s Theorem

Higher-Derivative Test for Relative Extrema

The n = 1 Case

Compare

f (x) = f (a) + f 0(a)(x � a) +
f 00(c)

2!
(x � a)2

under the hypothesis that f 00(x) exists on I to

f (x) = f (a) + L(x � a) + V (x)(x � a)

where L = f 0(a) and limx!a V (x) = 0 (from an equivalent

definition of f 0(a) – under hypothesis that f 0(a) exists).
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