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Riemann’s Theorem on Rearrangements

Riemann’s Theorem

Theorem

Suppose Y, ax is conditionally convergent. Given any real
number S, there is a rearrangement ", a,, that converges to
S.

. . o=
Given a series ) |, _4 a, let
ay := max{ax, 0} and a; := max{—ax,0}.

Then a = ay if ax > 0 and & = 0 otherwise; a, = |ay| f
ax < 0 and g, = 0 otherwise.

Proposition (Proved last time)

If ZT; ay is absolutely convergent, then the series >",_, &,
and Y.~ a, are both convergent. If >4 ax is conditionally
convergent, then the series >, —; a; and >7=, a, are both
divergent. i
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Riemann 's Theorem on Rearran EINES

Proof of Riemann’s Theorem
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Riemann 's Theorem on Rearran EINES

Proof of Riemann’s Theorem, Continued
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Riemann’s Theorem on Rearrangements

Example

Take the series

1 1 1 1
- k+17:1_7 S0
;( 1) p stz—zt

1@3@ +X
which converges and has sum log 2 (the Taylor series of4egx). \
The rearrangement

1+1 f1+ 1+1 f1+ 1+l f1+
3 2 5 7 4 9 11 6
converges to 3 log 2, being 3% (— 1)1 L + 55700 (= 1)1,

The parentheses reflect the algorithm used in the proof of
Riemann’s theorem to achleve S=2log2.
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Riemann’s Theorem on Rearrangements

Example, Continued
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Limits of Functions and Continuity

Limit of a Function

Let X and Y be metric spaces (important case X = R”,
Y=R™M),Dc Xandf:D — Y. Let abe a cluster point of D,
and let L € X7 We say that f has limit L as x approaches a, and

write limy_,4 f(x) = L if for every ¢ > 0 there is a § > 0 such that
(Q(\c‘-aL as %3 Q)

x € Dand 0 < d(x,a) < d = d(f(x),L) < e.

If, under the assumption of the definition above,
limx_a f(x) = Ly and limyx_,5 f(X) = Lp, then Ly = L,.




