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Riemann’s Theorem on Rearrangements

Limits of Functions and Continuity

Riemann’s Theorem

Theorem

Suppose
P1

k=1
ak is conditionally convergent. Given any real

number S, there is a rearrangement
P1

k=1
apk that converges to

S.

Given a series
P

k=1
ak , let

a+
k := max{ak , 0} and a�

k := max{�ak , 0}.
Then a+

k = ak if ak > 0 and a+
k = 0 otherwise; a�

k = |ak | if

ak < 0 and a�
k = 0 otherwise.

Proposition (Proved last time)

If
P

k=1
ak is absolutely convergent, then the series

P
k=1

a+
k

and
P

k=1
a�

k are both convergent. If
P

k=1
ak is conditionally

convergent, then the series
P

k=1
a+

k and
P

k=1
a�

k are both

divergent.
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Limits of Functions and Continuity

Proof of Riemann’s Theorem
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Know Eka ht , Era E diverge , Tzar converges
⇒ ah - o as k → *

. Suppose
"

s 20 .

Coensthat a rearrangement of Eape assper algorithm
:

I
.

Add ant 's from Tap (in their original order)

up to the first ant team sothatYtxceed S (possible
Because East diverges to

- )
2
.

Add negative tennngyof Eaa bi their original
order)

up
to the first of so

that the resulting sums
'

.

f. possible b/c za E diverges to a ) .

3
. Repeat steps 1 & 2

.

Never terminates , We

Get a rearrangement Z?qp* . Tak ,
Zadeh diverge .
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Proof of Riemann’s Theorem, Continued
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Given E > 0,7N
'

.
then laake

.

Choose

K : ay . >aware among apyapg ..

> apk .

Thus
, if
k 2K ,

then la pal CE .

AIs : th K IS - Egpal CE .

Otherwise
,

if l S - EEpal 2e for some n 2K ,
then

we've added too many terms of
.

the same sign
in the algorithm .

•

-8

'

Thurs
,
Sapa convergesapu = - Api k=i¥÷T⇐If Seo

,
then start Ei tsscep -2 .
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Example

Take the series

1X

k=1

(�1)k+1 1

k
= 1 � 1

2
+

1

3
� 1

4
+ . . . ,

which converges and has sum log 2 (the Taylor series of log x).

The rearrangement

✓
1 +

1

3

◆
� 1

2
+

✓
1

5
+

1

7

◆
� 1

4
+

✓
1

9
+

1

11

◆
� 1

6
+ . . .

converges to
3

2
log 2, being

P1
k=1

(�1)k+1 1

k + 1

2

P1
k=1

(�1)k+1 1

k .

The parentheses reflect the algorithm used in the proof of

Riemann’s theorem to achieve S = 3

2
log 2.
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⑧**x)

⇐ that > Is at -44 ,etc .
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Example, Continued
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I - I t z - H t f - I + I -I + f -to t. .
+
o t

'

z
t O -y t O + I t O -f t O t ,I

t.at#zf4atoX-.
= f -t 's ) - E t ft t tf - Tay t⑤⇒ - . . .



Riemann’s Theorem on Rearrangements

Limits of Functions and Continuity

Limit of a Function

Definition

Let X and Y be metric spaces (important case X = Rn,

Y = Rm), D ⇢ X and f : D ! Y . Let a be a cluster point of D,

and let L 2 X . We say that f has limit L as x approaches a, and

write limx!a f (x) = L if for every " > 0 there is a � > 0 such that

x 2 D and 0 < d(x , a) < � ) d(f (x), L) < ".

Theorem

If, under the assumption of the definition above,
limx!a f (x) = L1 and limx!a f (x) = L2, then L1 = L2.

Proof.
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(fl → has .x→a)

too
.

# i-qkzlsdkhogfexpltdkk.az?cxl)kEtE--eif we choose X close enough to a . M 2
.

2

0<d(X
, a) ad . Then

'

we hav"e land dllyhfo
.


