Math 5615 Honors: Limits of Functions and Continuity

Sasha Voronov

University of Minnesota
November 6, 2020

Limit of a Function

Definition

Let X and Y be metric spaces (important case $X=\mathbb{R}^{n}$, $\left.Y=\mathbb{R}^{m}\right), D \subset X$ and $f: D \rightarrow Y$. Let a be a cluster point of D, and let $L \in Y$. We say that f has limit L as x approaches a, and write $\lim _{x \rightarrow a} f(x)=L$ if for every $\varepsilon>0$ there is a $\delta>0$ such that
$f(x) \rightarrow L a, x x \rightarrow a)$
$(x \in D$ and $0<d(x, a)<\delta) \Rightarrow d(f(x), L)<\varepsilon$.

Theorem

If, under the assumption of the definition above, $\lim _{x \rightarrow a} f(x)=L_{1}$ and $\lim _{x \rightarrow a} f(x)=L_{2}$, then $L_{1}=L_{2}$.

Proved last time.

Continuity
Def. Let $f: D \rightarrow Y, D \subset X, a \in D . f$ is continuous at a, if $\forall \varepsilon>0$ JR $\%$:
Fetation

Th m, Let $D \subset X$ and $f: D \rightarrow Y$. If $a \in D$ then f is continuous at a if and a is a cluster point of D

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

Theorem (Sequential Characterization of Limits)
Let $D \subset X$ and $f: D \rightarrow Y$. Then the following are true:

1. Let a be a cluster point of D. Then $\lim _{x \rightarrow a} f(x)=L$ if and only if for every sequence $\left\{x_{n}\right\}$ in D such that $\forall n, x_{n} \neq a$ $\lim _{n \rightarrow \infty} x_{n}=a$, we have $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=L$.
2. Function f is continuous at $a \in D$ if and only if for every sequence $\left\{x_{n}\right\}$ in D such that $\lim _{n \rightarrow \infty} x_{n}=a$, we have $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(a)$.

Proof of Sequential Characterization Theorem
Only $\left\{\frac{2 \text { is similar) }}{\text { Suppose }}\left\{x_{n}\right\} \rightarrow a, x_{n} \in D \backslash\{a\}\right.$.
Proof. \Rightarrow Given $\varepsilon>0 \exists \delta>0$:
$\forall x \in D$ and $0<d(x, a)<\delta$, we have $d(f(x), 1)<$ Since $\lim _{n \rightarrow \infty} x_{n}=a, \exists N: \forall n \geqslant N \quad d\left(x_{n}, a\right)<\delta$. Note rhet $\forall n \geqslant N \quad x_{n} \in D$ and $0<d\left(x_{n}, a\right)<d$.
Then $d\left(f\left(x_{n}\right), 1\right)<\varepsilon$ by three likes above.
(E) By contradiction: Suppose not true that

$$
\begin{aligned}
& =\frac{\text { by contradiction: Suppose }}{} \lim _{x \rightarrow a} f(x)=L, \quad \text { Then } I \varepsilon>0: \forall \delta_{n}=\frac{1}{n}, \\
& \Delta \wedge, \quad 0<d\left(x_{n}, a\right)<\delta_{n} \text { best }
\end{aligned}
$$

$n \in \mathbb{Y}, \exists x_{n} \in D: \quad 0<d\left(x_{n}, a\right)<\delta_{w} b$ bet $d\left(f\left(x_{n}\right), L\right) \geqslant \varepsilon_{t}$ Then $\forall n x_{n} \neq a$ and $\lim _{n \rightarrow \infty} x_{n}=a$ Bi f it's not the that $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=L=L_{4}^{n}$

Further simple properties of limits

1. $\lim _{x \rightarrow a} f(x)=L \in Y$ if and only if $\lim _{x \rightarrow a} d(f(x), L)=0$.
(Note: $d(f(x), L)$ is a function $X \rightarrow \mathbb{R}$, whereas f is a function $X \rightarrow Y$.)
2. If $\lim _{x \rightarrow a} f(x)=L \in \mathbb{R}^{n}$, then for any scalar $c \in \mathbb{R}$, $\lim _{x \rightarrow a} c f(x)=c L$. Similar property for sums and inner products of \mathbb{R}^{n}-valued functions and quotients of real-valued functions.
Same for continuous at a functions. (Use sequential cherract,
3. If $g(x) \leq f(x) \leq h(x) \in \mathbb{R}$ for all x in a common domain of limits) having a as a cluster point, and $\lim _{x \rightarrow a} g(x)=\lim _{x \rightarrow a} h(x)=L$ exists, then $\lim _{x \rightarrow a} f(x)=L$. Use sequential charactori-
or

$$
|f(x)-L| \leq|f(x)-g(x)|+|g(x)-L|
$$

$$
\leqslant|h(x)-g(x)|+|g(x)-L|
$$

$$
\leq|h(x)-L|+|L-g(x)|+|g(x)-L|
$$

$$
<\frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3}=\varepsilon
$$

with a suitable choice of a δ-ball about a,

Continuity of Composition
Theorem
Let $U \subset X$ and $V \subset Y$, and suppose that $g: U \rightarrow$ Hand $f: V \rightarrow Z$. If g is continuous at $a \in U$ and f is continuous at $g(a) \in V$, then $f \circ g$ is continuous at a.

Proof.

Sequential cheracterzetion!
$\forall\left\{x_{n}\right\} \subset U$,

$$
\lim _{n \rightarrow \infty} x_{n}=a ;
$$

we have $\lim _{n \rightarrow \infty} g\left(X_{n}\right)=g(a)$. The $f\left(g\left(x_{n}\right)\right)$
$\rightarrow f(g(a)) b / c \quad f$ is cts at $g(a)$. thus, fog is counts at a. 0

