Math 5615 Honors: Limits of Functions and Continuity

Sasha Voronov

University of Minnesota

November 6, 2020

《曰》 《聞》 《臣》 《臣》 三臣 …

Definition

Let X and Y be metric spaces (important case $X = \mathbb{R}^n$, $Y = \mathbb{R}^m$), $D \subset X$ and $f : D \to Y$. Let *a* be a cluster point of *D*, and let $L \in Y$. We say that *f* has limit *L* as *x* approaches *a*, and write $\lim_{x\to a} f(x) = L$ if for every $\varepsilon > 0$ there is a $\delta > 0$ such that $\begin{pmatrix} L(x) \to L & f(x) = L \\ f(x) \to L \\ f(x)$

Theorem

If, under the assumption of the definition above, $\lim_{x\to a} f(x) = L_1$ and $\lim_{x\to a} f(x) = L_2$, then $L_1 = L_2$.

Proved last time.

Continuity

Def. Let
$$f: D \to Y$$
, $D \subset X$, $a \in D$. f is continuous at a , if $f \in 2 > 0$ $\exists d > 0$,
 $(x \in D \text{ and } d(x,a) < \delta) \Rightarrow d(f(x), f(a)) < \varepsilon$.
Example 1
M.M., Let $D \subset X$ and $f: D \to Y$. If $a \in D$, then f is continuous at a if
 $a = a$ is a cluster point of D
 $\lim_{x \to a} f(x) = f(a)$.

Theorem (Sequential Characterization of Limits)

Let $D \subset X$ and $f : D \to Y$. Then the following are true: 1. Let a be a cluster point of D. Then $\lim_{x\to a} f(x) = L$ if and only if for every sequence $\{x_n\}$ in D such that $\forall n, x_n \neq a$ $\lim_{n\to\infty} x_n = a$, we have $\lim_{n\to\infty} f(x_n) = L$. 2. Function f is continuous at $a \in D$ if and only if for every sequence $\{x_n\}$ in D such that $\lim_{n\to\infty} x_n = a$, we have $\lim_{n\to\infty} f(x_n) = f(a)$.

Proof of Sequential Characterization Theorem

Only (2155miler). Proof. (2000) Given 270 3820: +×∈D and o<d(x,a) < f, we have d(f(x),1) € Some Rim $X_n = a$, $\exists N$. $\forall n \ge N d(X_n, a) < \delta$ Note that In 2 N Xn ED and o <d (xm a) < d! Then d(f(xn), L) < E by three lines above E by contradiction: Suppose not true that $\lim_{X \to a} f(x) = L$, Then $\exists \epsilon > 0$: $\forall d_n = \frac{1}{n}$, $n \in NY$, $\exists X_n \in D$: $o < d(X_n, a) < d$, but d(f(X'n), L) > E. Then the X'n # q and lin Xi=a fut it's not true that line f(Xn)=L.

1. $\lim_{x\to a} f(x) = L \in Y$ if and only if $\lim_{x\to a} d(f(x), L) = 0$. (Note: d(f(x), L) is a function $X \to \mathbb{R}$, whereas f is a function $X \to Y$.)

2. If $\lim_{x\to a} f(x) = L \in \mathbb{R}^n$, then for any scalar $c \in \mathbb{R}$, $\lim_{x\to a} cf(x) = cL$. Similar property for sums and inner products of \mathbb{R}^n -valued functions and quotients of real-valued functions. Same for continuous at *a* functions. (Use sequential charact, 3. If $g(x) \le f(x) \le h(x) \in \mathbb{R}$ for all *x* in a common domain

3. If $g(x) \le f(x) \le h(x) \in \mathbb{R}$ for all x in a common domain having a as a cluster point, and $\lim_{x\to a} g(x) = \lim_{x\to a} h(x) = L$ exists, then $\lim_{x\to a} f(x) = L$. [(LSE sequential characteristics)

$$|f(X) - L| \leq |f(X| - g(X)| + |g(X| - L|)$$

$\leq |l_{i}(x) - g(x)| + |g(x) - L|$

 $\leq [h(x)-L[+]L-g(x)]+[g(x)]-L]$

 $\langle \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon$ with a suitable choice of a d-ball about a,

Continuity of Composition

Theorem

Let $U \subset X$ and $V \subset Y$, and suppose that $g : U \to \mathcal{X}$ and $f : V \to Z$. If g is continuous at $a \in U$ and f is continuous at $g(a) \in V$, then $f \circ g$ is continuous at a.

