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Correction: Continuity

Today: X and Y are metric spaces.

Definition

Let D ⇢ X and f : D ! Y . If a 2 D, then f is continuous at a if

8" > 0, 9� > 0 : d(x , a) < � ) d(f (x), f (a)) < ".

Theorem

Let D ⇢ X and f : D ! Y. If a 2 D and a is a cluster point of D,
then f is continuous at a iff

lim
x!a

f (x) = f (a).

Proof. By definition,

lim
x!a

f (x) = f (a)

, 8" > 0, 9� > 0 : 0 < d(x , a) < � ) d(f (x), f (a)) < ".
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Continuation of the Proof

Since d(f (a), f (a)) = 0, the condition 0 < d(x , a) may be

removed without affecting the statement in the previous line.

This makes it equivalent to the above definition of continuity at

a.
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Continuity on a Domain

Definition

We say that a function f : D ⇢ X ! Y is continuous on D if it is

continuous at each a 2 D.

Definition

U ⇢ D ⇢ X is open relative to D if there exists an open set

V ⇢ X such that V \ D = U. Equivalently, U is open relative to
D if U is open in D as a metric space, with the metric space

structure (distance function) coming from that of X .

Theorem

A function f : D ! Y is continuous on D if and only if the
inverse image f�1(V ) := {x 2 D | f (x) 2 V} of every open set
V ⇢ Y is open relative to D. If the domain D is an open set in
X, then f is continuous on D if and only if the inverse image
f�1(V ) of every open set V ⇢ Y is open.
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picture to illustrate open relative to D sets :
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Proof
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Proof, Continued
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Corollary for closed sets

Corollary

A function f : D ! Y is continuous on D if and only if the
inverse image f�1(C) := {x 2 D | f (x) 2 C} of every closed set
C ⇢ Y is closed relative to D. If the domain D is a closed set in
X, then f is continuous on D if and only if the inverse image
f�1(C) of every closed set C ⇢ Y is closed.

Proof.
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Continuous Images of Connected Sets

Theorem

If f : D ⇢ X ! Y is continuous and D is a connected set in X,
then f (D) is a connected set in Y .

Proof.
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Intermediate Value Theorem

Corollary

If f : [a, b] ! R is a continuous function, and c is any real
number strictly between f (a) and f (b), then there exists a point
x 2 (a, b) such that f (x) = c.

Proof.
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