Math 5615 Honors: Properties of Continuous Functions

Sasha Voronov

University of Minnesota

November 9, 2020

Correction: Continuity

Today: *X* and *Y* are metric spaces.

Definition

Let $D \subset X$ and $f : D \rightarrow Y$. If $a \in D$, then f is continuous at a if

$$\forall \varepsilon > 0, \exists \delta > 0 : (d(x, a) < \delta) \Rightarrow d(f(x), f(a)) < \varepsilon.$$

$$equivalently, f(D \cap B\delta(a)) \subset B\varepsilon(f(a))$$

Theorem

or

Let $D \subset X$ and $f : D \rightarrow Y$. If $a \in D$ and a is a cluster point of D, then f is continuous at a iff

$$\lim_{x\to a}f(x)=f(a).$$

Proof. By definition,

$$\lim_{x \to a} f(x) = f(a)$$

$$\Leftrightarrow \forall \varepsilon > 0, \exists \delta > 0 : 0 < d(x, a) < \delta \Rightarrow d(f(x), f(a)) < \varepsilon.$$

Since d(f(a), f(a)) = 0, the condition 0 < d(x, a) may be removed without affecting the statement in the previous line. This makes it equivalent to the above definition of continuity at *a*.

Definition

We say that a function $f : D \subset X \rightarrow Y$ is *continuous on D* if it is continuous at each $a \in D$.

Definition

 $U \subset D \subset X$ is open relative to *D* if there exists an open set $V \subset X$ such that $V \cap D = U$. Equivalently, *U* is open relative to *D* if *U* is open in *D* as a metric space, with the metric space structure (distance function) coming from that of *X*.

Theorem

A function $f : D \to Y$ is continuous on D if and only if the inverse image $f^{-1}(V) := \{x \in D \mid f(x) \in V\}$ of every open set $V \subset Y$ is open relative to D. If the domain D is an open set in X, then f is continuous on D if and only if the inverse image $f^{-1}(V)$ of every open set $V \subset Y$ is open.

Picture to illustrate open relative to D sets: D) M = M DV open in X Remark; U vel. open in D If Djøpen, then U open relative to D ilf Il is open in X. Indeed, 3JV open in X: U=VAD => U open in X EIf Uisopenix, UCD, take Then U Z VnD.

Proof

(=) Suppose f is costs on D, V<Y open i.e. $D \cap B p(a) \subset f^{-1}(V)$ [This implies a is an interior $U_{11} = \bigcup_{\alpha \in f^{-1}(V)} Bola(\alpha) \subset X$ pt of f-1(V) CD Wellwed as a metric space Claim: U, ND = f-(V) and U, CX open. (See why a your own,)

Proof, Continued

Suppose \forall open $V \subset Y \exists$ open $U \subset X$ s.t. $f^{-1}(U) = U \cap D$. Let $a \in D$. Want to show f is couts at a. $\forall E \ge 0$, $B_E(f(a))$ is open and $a \in f^{-1}(B_{\mathcal{E}}(f(a)))$. Then \exists open $U \not\in X$: $a \in f^{-1}(B_{\mathcal{E}}(f(a))) = U \cap D$. Take $\delta : B_{\mathcal{E}}(a) \subset U$. The DABS (a) - DAU = $f'(B_2(f(a)))$ $\implies f(D \cap B_{\mathcal{O}}(\alpha)) \subset B_{\mathcal{E}}(f(\alpha))$ ad f is cats at α . \Box

Corollary for closed sets

Corollary

A function $f : D \to Y$ is continuous on D if and only if the inverse image $f^{-1}(C) := \{x \in D \mid f(x) \in C\}$ of every closed set $C \subset Y$ is closed relative to D. If the domain D is a closed set in X, then f is continuous on D if and only if the inverse image $f^{-1}(C)$ of every closed set $C \subset Y$ is closed.

Proof. sed rel. to D means intersection of a closed subset in X with D, Cholosed () C° = Y C is open $f'(c^{c}) = f'(c)^{c} \wedge D = D \setminus f'(c)$ $= (E \times ercise) \square$ < 日 > < 同 > < 回 > < 回 > < □ > <

Continuous Images of Connected Sets

Theorem

If $f : D \subset X \to Y$ is continuous and D is a connected set in X, then f(D) is a connected set in Y.

Proof. Suppose f(D) is disconnected, i.e., 7 rel. open U, V, in f(D): U, +P, V, +P, $\mathcal{U}_{1} \cap \mathcal{V}_{1} = \emptyset, \quad \mathcal{U}_{1} \cup \mathcal{V}_{1} = f(\mathbb{D}).$ f costs => f - 1/U,), f (U,) are religen in D. They are to disjoint and f'((4,) U f'(V)) = D, b/c 4, UV, = f(b) Thus, D must be disconnected D ・ロト ・ 同ト ・ ヨト ・ ヨト

Intermediate Value Theorem

Corollary

If $f : [a, b] \to \mathbb{R}$ is a continuous function, and c is any real number strictly between f(a) and f(b), then there exists a point $x \in (a, b)$ such that f(x) = c.

oof. f(ta, 63) is connected by Theorem it's on ilternal $\Gamma = f(ta, 63)$ Proof. $f(a), f(b) \in I$. If c is strictly between $f(a) \& f(b), then C \in I = f(Ia, b]).$ So, f(x)=c for some x E EagBJ. Actually, $x \neq a$ or b, b/c $c \neq f(a)$ or $f(b) \stackrel{\cdot}{\rightarrow} \chi E(a, b)$. \Box