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Correction: Continuity

Today: X and Y are metric spaces.

LetDc Xandf: D— Y. If ae D, then f is continuous at a if

V5>O E|6>0{?ixa <<;}:d(f§ x),f(a)) < e.
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Theorem

LetDc Xandf:D— Y. Ifae D and a is a cluster point of D,
then f is continuous at a iff

lim f(x) = f(a).

X—a

Proof. By definition,

)I(iLna f(x) = f(a) weD
&Ve>0,36 >0 :&O <d(x,a) < ;}:> d(f(x), f(a)) < e.
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Continuation of the Proof

Since d(f(a), f(a)) = 0, the condition 0 < d(x, a) may be
removed without affecting the statement in the previous line.
This makes it equivalent to the above definition of continuity at

e A
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Continuity on a Domain

Definition
We say that a function f : D € X — Y is continuous on D if it is
continuous at each a € D.

Definition

U c D c Xis open relative to D if there exists an open set

V C X suchthat VN D = U. Equivalently, U is open relative to
Dif Uis open in D as a metric space, with the metric space
structure (distance function) coming from that of X.

Theorem

A function f : D — Y is continuous on D if and only if the
inverse image f~1(V) := {x € D | f(x) € V} of every open set
V C Y is open relative to D. If the domain D is an open set in
X, then f is continuous on D if and only if the inverse image
f=1(V) of every open set V C Y is open.
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Proof, Continued

Sepprse \/Cy OT/CHUCX
@@% T T D ek
g/ﬁ»ou (s c;aw@dé’\ )v‘£>o Ba(f(éiﬁ\c;
ﬁﬁf/a M ¢ £ (ﬁz(ﬁg “3\> /(L{% 3%‘*%
el (@t Ha))) = KnD. Tﬂﬂuf Bp(a\= W\
tt.. Dby @D U =£7( BlR)
= & (D nly (=) = @zé@(a)



Corollary for closed sets

Corollary

A function f : D — Y is continuous on D if and only if the

inverse image f~1(C) := {x € D| f(x) € C} of every closed set

C C Y is closed relative to D. If the domain D is a closed set in

X then f is continuous on D if and only if the inverse image
f~1(C) of every closed set C C Y is closed.
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Continuous Images of Connected Sets

Theorem

Iff: Dc X — Y is continuous and D is a connected set in X,
then f(D) is a connected setin Y.
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Intermediate Value Theorem

Corollary

Iff: [a, b] — R is a continuous function, and c is any real
number strictly between f(a) and f(b), then there exists a point
X € (a, b) such that f(x) = c.
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