Math 5615 Honors：Newton＇s Method

Sasha Voronov
University of Minnesota

December 4， 2020

Contraction Mapping

Definition

A mapping $T: X \rightarrow X$ of a metric space X with metric d to itself is a contraction mapping if there is a number $0<r<1$ such that $d(T(x), T(y)) \leq r d(x, y)$ for all $x, y \in X$. Such a constant r is called a contraction constant for T.

Theorem (Contraction Mapping Theorem)

A contraction mapping $T: X \rightarrow X$ of a complete metric space X has a unique fixed point x^{*}. Moreover, if r is a contraction constant for T, then given any $x_{0} \in X$, the iteration $x_{k+1}=T\left(x_{k}\right), k=0,1,2,3, \ldots$ defines a sequence $\left\{x_{k}\right\}$ that converges to x^{*}, and for each k, we have

$$
d\left(x_{k}, x^{*}\right) \leq \frac{r^{k}}{1-r} d\left(x_{1}, x_{0}\right)
$$

Using the Contraction Mapping Theorem to Solve $f(x)=0$

Suppose we want to solve an equation $f(x)=0$ for a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ on a closed interval $I \subset \mathbb{R}$, such as $x^{3}-x-1=0$ on $[1, \infty)$. We do not know a formula for finding a root (well, actually, there is one, but if the equation were $x^{5}-x-1=0$, there would be none), so we might try to compute the root approximately.
Idea: create a contraction mapping $g:[a, b] \rightarrow[a, b]$, making sure that $f(x)=0$ has a solution on $[a, b] \subset I$, so that $f(x)=0 \Leftrightarrow g(x)=x$. Then if we take any $x_{0} \in[a, b]$ and do iterations

$$
x_{n+1}=g\left(x_{n}\right)
$$

x_{n} will be approaching the true soluition x^{*} of $g(x)=x$ as $n \rightarrow \infty$.

Newton's Method

The only thing left is to find a closed insteval $[a, b] \subset I$ and construct that $g(x)$ so as
(1) $g(x)=x \Leftrightarrow f(x)=0$,
(2) $g:[a, b] \rightarrow[a, b]$ is a contraction mapping:

$$
|g(x)-g(y)| \leq r|x-y| \quad \text { for some } r, 0<r<1 .
$$

1 is easy: $f(x)=x^{3}-x-1=0 \Leftrightarrow x=x^{3}-1=g_{1}(x)$, but it is not a contraction anywhere near the expected root of $f(x)$ between 1 and $2(f(1)=-1, f(2)=5): g_{1}^{\prime}(x)=3 x^{2}>1$ and $g_{1}(x)-g_{1}(y)=g_{1}^{\prime}(c)(x-y), c \in(a, b)$, whence there is no way to have $\left|g_{1}(x)-g_{1}(y)\right| \leq r|x-y|$ for $r<1$ anywhere on [1,2]. Newton's method: Try $g(x):=x-f(x) / f^{\prime}(x)$, if $f^{\prime}(x) \neq 0$. Then the iterations will look like:

$$
x_{n+1}:=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

Geometric Interpreation
Wrote that $\quad x_{n+1}:=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$
is the x intercept of the tangent line $y=f\left(x_{n}\right)+f^{\prime}\left(x_{n}\right)\left(x-x_{n}\right)$ to the graph of $y=f(x)$ at $\left(x_{n}, f\left(x_{n}\right)\right)$. Indeed,

$$
f\left(x_{n}\right)+f^{\prime}\left(x_{n}\right)\left(x_{n+1}-x_{n}\right)=0
$$

is equivalent to (1).

Newton's Method Justified
If we somehow knew that at the expected solution x^{*} of $f(x)=0, f^{\prime}\left(x^{*}\right) \neq 0$, for example, if we knew $f^{\prime}(x)>0$ on I, then Condition 1 for $g(x)$ would be satisfied:

$$
g(x)=x-\frac{f(x)}{f^{\prime}(x)}=x \Leftrightarrow \frac{f(x)}{f^{\prime}(x)}=0 \Leftrightarrow f(x)=0
$$

In our case, $f^{\prime}(x)=3 x^{2}-1>0$ for $x \geq 1$.
What about Condition 2, contraction mapping, for g ?
Theorem
If f has $f^{\prime}(x)$ and $f^{\prime \prime}(x)$ on an open interval containing $x^{*}, f^{\prime \prime}(x)$ is continuous there, and $f^{\prime}\left(x^{*}\right) \neq 0$, then here exists a $\delta>0$ such that $|g(x)-g(y)| \leq \frac{1}{2}|x-y|$ for $x, y \in\left[x^{*}-\delta, x^{*}+\delta\right]$.
(works also for any $r, 0<r<1$, with suitable choice of $\delta_{6,1}$)

Proof of Newton's Method
If δ is so small that $f(x) \neq 0$ on $\left[x^{2}-8, x^{4}+8\right]$, then $g(x)=x-\frac{f(x)}{f^{\prime}(x)}$ will be well-lefined there.
$|g(x)-g(y)|=\left|g^{\prime}(c)\right| \cdot|x-y|$ for some c between x and $y, x, y \in\left[x^{\delta}-8, x^{*}+8\right]$. Let's compote

$$
g^{\prime}(x)=\left(x-\frac{f(x)}{f^{\prime}(x)}\right)^{\prime}=1-\frac{f^{\prime}(x) f^{\prime}(x)-f^{\prime \prime}(x) f(x)}{\left(f^{\prime}(x)\right)^{2}}
$$

$=\frac{f^{\prime \prime}(x) f(x)}{f^{\prime}(x)^{2}}$. At $x^{*}, f\left(x^{*}\right)=0$, therefore, $g^{\prime}\left(x^{*}\right)=0$. By cost imine of g^{\prime} at x^{*}, for ' δ sift. small, $\left|g^{i}(x)\right| \leq \frac{1}{2}$ for $\left|x-x^{*}\right|<\delta$. Thus, for $x y$ there, $|g(x)-g(y)| \leqslant \frac{1}{2}|x-y| \leqslant \square_{7 /}$

Comment to justify Newton's method:
For small enough δ,
g maps $\left[x^{*}-\delta, x^{*}+8\right]$ to itself, $\left[x^{+}-8, x^{*}+8\right]$. Indeed,

$$
\begin{aligned}
\left.g\left(x^{*}\right)=x^{*}, \quad \mid g(x)-g_{1}^{4} x^{*}\right) \mid & \leq \frac{1}{2}\left|x-x^{*}\right| \\
g\left(x \left\lvert\, \in\left[x^{*}-\frac{1}{2} \delta, x^{+}+\frac{1}{2} \delta\right]\right.\right. & \left.\leq \frac{1}{2} \delta x^{k} \delta x_{1}^{*}+\delta\right]
\end{aligned}
$$

