Math 5615H: Honors: Introduction to Analysis Useful Lemma Decimal Expansions The Euclidean Space \mathbb{R}^{n}

Sasha Voronov

University of Minnesota
September 23, 2020

Useful Lemma
Lemma
Let z be a real or complex number. If $|z| \leq \varepsilon$ for every $\varepsilon>0$,
then $z=0$.
Proof. Clearly, $|z| \geqslant 0$. If $|z|=0$,
then $z=0$. Done.
If $\| z \mid>0$. Take $\varepsilon=\frac{|z|}{2}>0$.
Then $|z| \leqslant \frac{|z|}{2} \Rightarrow 2|z| \leqslant|z| \Rightarrow|z| \leqslant 0$.
$\left(\bigcup_{2} \leq 1\right) \underset{\substack{\text { contradictions }}}{\substack{n}}$

Decimals
rational
Let $x \geqslant 0$ be a real number. Define a set E of reatnumbers

$$
\begin{align*}
& y_{0}:=n_{0} \leq x, \quad \text { largest } n_{0} \in \mathbb{N}, \cup\{0\} \\
& y_{1}:=n_{0}+n_{1} / 10.2 x \text {, largest } n_{v} \in \mathbb{N} \cup\{0\} \\
& y_{k}=n_{0}+\frac{n_{1}}{10}+\cdots+\frac{n_{k}}{10^{k}} \leq x, \quad \text { largest } n_{k} \in \mathbb{N}, \cup\{0\} \tag{1}\\
& E:=\left\{y_{0}, y_{1}, y_{2} \ldots \ldots y_{k}, \ldots\right\} \subset \mathbb{D}
\end{align*}
$$

Then $x=\sup E_{\text {(}}^{\text {(Why }}$ exists?) The decimal expansion of x is If $x_{1}<x$ is another upper bound for E

$$
\begin{equation*}
x=n_{0} \cdot n_{1} n_{2} n_{3} \ldots \tag{2}
\end{equation*}
$$

We know enough to prove: $x=\sup E ; 0 \leq n_{i} \leq 9$ for $i \geq 1$.

Bijection Statement

Would need to know that

$$
\sum_{k \geq n+1} \frac{9}{10^{k}}=\frac{1}{10^{n}}
$$

to show that $n_{i}<9$ for infinitely many i. This would imply that
n_{n} was not the largest. $n_{0 \ldots} n_{1} n_{2} \ldots n_{n} 999 \ldots .=n_{0}, n_{1} \ldots n_{n} 9$
$=n_{0} \cdot n_{1} \ldots\left(n_{n}+1\right) 0000 \ldots$

Theorem

There is a bijection between \mathbb{R} and decimal expansions (2) with $n_{0} \in \mathbb{Z}, 0 \leq n_{i} \leq 9$ for $i \geq 1$, and $n_{i}<9$ for infinitely many i.

Idea of Proof.

Given a decimal expansion (2), the set E of numbers (1) is bounded above, and $x=\sup E$ has (2) as decimal expnsn.

Binary Expansions

Theorem

There is a bijection between \mathbb{R} and expansions (2) with $n_{0} \in \mathbb{Z}$, $n_{i}=0$ or 1 for $i \geq 1$, and $n_{i}=0$ for infinitely many i.

This expansion is called the binary expansion of x.
Idea of Proof.
Use (for $x \geqslant 0) n_{0}+\frac{n_{1}}{2}+\cdots+\frac{n_{k}}{2^{k}} \leq x$.
Everything else is the same as in previous theorem.
\mathbb{R} is uncountable
Theorem
The complete ordered field \mathbb{R} is uncountable.
Proof. Add to the set of binary expansions the set S of those expansions for which $n_{i}=0$ for finitely many i This is a $S_{h}=\mathbb{Z} \times\{0,1\}^{n}$ countable set as a countable union of finite-sets. We want to countable prove that the set $\mathbb{R} \cup S$ of binary sequences like (2), starting with $n_{0} \in \mathbb{Z}$ and $n_{i}=0$ or 1 for $i>0$, is uncountable. This will imply \mathbb{R} is uncountable, because if \mathbb{R} were countable, then $\mathbb{R} \cup S$ would also be countable.

$$
\left.\begin{array}{l}
\mathbb{R} \cup S \text { would also be countable. } \quad n_{n}=0 \text { or } \mid, i \geqslant 0, \\
n_{i}=0 \text { for }<\infty \text { many i's }
\end{array}\right\}
$$

table
$\mathbb{R} \cup S$ is uncountable

Cain! I can find a binary expos n not on this list. Indeed, take

$$
\begin{aligned}
& \text { his lis! } n_{0}^{\prime}, n_{1}^{\prime} n_{2}^{\prime} \text { where }
\end{aligned}
$$

$$
\begin{aligned}
& n_{0}{ }^{\prime} \in \mathbb{U}, n_{0}^{\prime} \neq n_{00}=01 \\
& 1
\end{aligned}
$$

$$
\begin{aligned}
& \text { suppose it's conteble } \\
& r_{0}=n_{008} n_{01} n_{22} n_{03} \ldots \\
& r_{1}=n_{10} \cdot n_{11} n_{13} n_{13} \\
& r_{2}=n_{20} \cdot n_{21} 4_{22}, n_{23} \ldots \\
& \frac{\text { Cater's diagnl }}{\text { argument }} \\
& (C \cdot \mid P(A) \neq A A)
\end{aligned}
$$

The Euclidean Space \mathbb{R}^{n}
\mathbb{R}^{n} : Definition and vector-space structure

$$
\begin{aligned}
& \mathbb{R}^{n}=(\underbrace{\mathbb{R}}_{n \times \mathbb{R} \times \mathbb{R}^{2} \times \mathbb{R}^{2}}, n \geq 0 \\
& =\left\{\left(x_{1},-, x_{n}\right) \mid x_{i} \in \mathbb{R}\right\} \\
& \left(x_{1}, x_{2},>x_{n}\right)+\left(y_{1}, \gg y_{n}\right):=\left(x_{1}+y_{1},>x_{n}+y_{n}\right) \\
& \alpha \in \mathbb{R}_{\alpha\left(x_{1}, \ldots x_{n}\right):=\left(\alpha x_{1}, x_{1}, \alpha x_{n}\right)}^{\text {Scalar multiplication }}
\end{aligned}
$$

The Euclidean Space \mathbb{R}^{n}
The Euclidean Inner Product and Properties

$$
\left.\begin{array}{l}
\vec{x}=\left(x_{1}, \ldots, x_{n}\right) \quad \vec{y}=\left(y_{1},>y_{n}\right) \\
(\vec{x}, \vec{y}):=\sum_{i=1}^{n} x_{i} y_{i}=x_{i} \cdot y_{1}+\ldots+x_{n} \cdot y_{n} \in(\mathbb{R}
\end{array}\right] \begin{aligned}
& (\vec{x}, \vec{x}) \geq 0 \text { and }=0 \text { off } \vec{x}=0 \\
& \left\{\begin{array}{l}
(\vec{x}+\vec{y}, \vec{z})=(\vec{x}, \vec{z})+(\vec{y}, \vec{z}) \\
(\vec{x}, \vec{y})=(\vec{y}, \vec{x}) \\
\text { (properties) }
\end{array}\right.
\end{aligned}
$$

The Euclidean Norm

$$
|\vec{x}|=\sqrt{(\vec{x}, \vec{x})}
$$

 those of $(-,-)$

$$
\text { Eg, } \left\lvert\,\left(x, \vec{y}| | \leq|\vec{x}|=|\vec{y}| \text { schwart } \begin{array}{c}
\text { inequalites }
\end{array}\right.\right.
$$

$$
\begin{aligned}
& \text { \& }(\vec{x}, \vec{y}):=|x|=\vec{y} \mid \\
& \text { instance betw } \bar{x} \& \vec{y}
\end{aligned}
$$

distane el betw $\bar{x} \& \bar{y}$

