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Cauchy-Schwarz Inequality

Theorem

For x, y 2 Rn with its standard inner product (x, y) and norm

|x| =
p
(x, x), we have

|(x, y)|  |x| · |y|.

Equality holds iff the vectors x, y are collinear, that is, iff one is

a scalar multiple of the other.

Proof. Look at (x + ty, x + ty) as a real-valued function of

t 2 R.
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The Proof of Cauchy-Schwarz Inequality, Continued
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Euclidean Distance

In Rn Euclidean distance (metric):

d(x, y) := |x � y| =
q
(x1 � y1)2 + · · ·+ (xn � yn)2.

Properties of the norm (e.g., |x + y|  |x|+ |y|, which may

easily be derived from Cauchy-Schwarz) dictate properties of

the distance in Rn. We use them as axioms of a metric space.
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Metric Spaces

Definition (Metric Space)

Let X be a nonempty set. A function d : X ⇥ X ! R denoted

d(x , y) is a metric in X if the following properties hold for

x , y , z 2 X :

1 d(x , y) > 0 if x 6= y ;

2 d(x , x) = 0;

3 d(x , y) = d(y , x);
4 d(x , y)  d(x , z) + d(z, y).

A nonempty set X with a metric is called a metric space.

Examples

Rn with Euclidean distance, C with d(z,w) := |z � w |
(generalizes to Cn). Math 5616H: C[a, b], R[a, b], L2[a, b].
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Basic Topology in Metric Spaces

Definition

(X , d) a metric space. Open ball:

B�(x) := {y 2 X | d(y , x) < �}, � > 0

A subset S ⇢ X is bounded if there is a number M > 0 such

that d(x , y)  M for all x , y 2 S.

If S ⇢ X , then x 2 X is called an interior point of S if there

exists a number � > 0 such that the open ball B�(x) ⇢ S.

A subset S ⇢ X is called an open set if every element of S is an

interior point of S. A subset S ⇢ X is called a closed set if its

complement, X \ S is open.

Note: X and ? are open. Therefore, they are also closed. An

open ball B�(x) is an open set.
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Boundary, Cluster, and Isolated Points; Closure

Definition

If S ⇢ X , a point x 2 X is called a boundary point of S if every

open ball about x contains at least one point of S and at least

one point of X \ S. The boundary of S, denoted @S, is the set

of boundary points of S.

If S ⇢ X , a point x 2 X is called a cluster point (accumulation

point, or limit point) of S if every open ball about x contains

infinitely many points of S (or, equivalently, one point of S apart

from x). A point x 2 S which is not a cluster point of S is called

an isolated point of S. The closure of S:

S = S [ {cluster points of S}.
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Characterization of Closed Sets

Theorem

For a subset S ⇢ X, TFAE:

1 S is closed;

2 S contains all its cluster points;

3 S = S.

Proof.
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