Math 5615H: Honors: Introduction to Analysis Proof of Cauchy-Schwarz Inequality Metric Spaces and Their Basic Topology

Sasha Voronov

University of Minnesota

September 25, 2020

<ロト <四ト <注入 <注下 <注下 <

Proof of Cauchy-Schwarz Inequality Metric Spaces and Their Basic Topology

Cauchy-Schwarz Inequality

Theorem

For $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ with its standard inner product (\mathbf{x}, \mathbf{y}) and norm $|\mathbf{x}| = \sqrt{(\mathbf{x}, \mathbf{x})}$, we have

$$|(\mathbf{x},\mathbf{y})| \le |\mathbf{x}| \cdot |\mathbf{y}|.$$

Equality holds iff the vectors \mathbf{x} , \mathbf{y} are collinear, that is, iff one is a scalar multiple of the other.

Proof. Look at $(\mathbf{x} + t\mathbf{y}, \mathbf{x} + t\mathbf{y})$ as a real-valued function of $t \in \mathbb{R}$. $(x + t\mathbf{y}, x + t\mathbf{y}) \ge 0$ $\forall t \in \mathbb{R}$ $(x + t\mathbf{y}, x + t\mathbf{y}) = (x, x) + 2t(x, y) + t^2(y, y)$ Leave case (y, y) = 0 to the end and assume (y, y) to have y = 0 to the end and assume (y, y) = 0have y = 0 to the end assume (y, y) = 0have (y, y) = 0 to the end (y, y) = 0have (y, y)

The Proof of Cauchy-Schwarz Inequality, Continued

DEn vewrites as $4(x,y)^2 - 4(y,y)(x,x) \leq 0$ $(x, y)^2 \leq (x, x)(y, y) (0 \leq a \leq b)$ $|(x, y)| \leq |x| \cdot |y| \quad 0 \leq va \leq vb$ Equality (=) D=0 (=) Ito Elk: at? the i. R., $(X+toy, X+toy) = 0 \iff |X+ty| = 0$ $\implies X+ty = 0 \iff X = -toy$ $\stackrel{Se}{\longrightarrow} (X+ty) = 0 \iff X = -toy$ $\stackrel{Se}{\longrightarrow} (X,0) \le |X| \cdot |0|$ $\stackrel{Se}{\longrightarrow} t = 0 \cdot X, i.e., X:y are collimed. D$

Proof of Cauchy-Schwarz Inequality Metric Spaces and Their Basic Topology

Euclidean Distance

$$\|X - Y\| \leq |Z - X| + |Y - 2|$$
ⁿ Euclidean distance (metric):

$$d(\mathbf{x}, \mathbf{y}) := |\mathbf{x} - \mathbf{y}| = \sqrt{(x_1 - y_1)^2 + \dots + (x_n - y_n)^2}.$$

In ℝ

$$d(\mathbf{x},\mathbf{y}) := |\mathbf{x} - \mathbf{y}| = \sqrt{(x_1 - y_1)^2 + \cdots + (x_n - y_n)^2}.$$

Properties of the norm (e.g., $|\mathbf{x} + \mathbf{y}| \le |\mathbf{x}| + |\mathbf{y}|$, which may easily be derived from Cauchy-Schwarz) dictate properties of the distance in \mathbb{R}^n . We use them as axioms of a metric space.

$$(|\chi| + |y|)^{2} = (\chi \times) + 2|\chi| \cdot |y| + |y|)$$

$$> (\chi, \chi) + 2((\chi, y)) + (y, y)$$

$$= (\chi + y, \chi + 2(\chi, y)) + (y, y) = (\chi + y, \chi + y) > 0$$

$$= (\chi + y, \chi + y) + (\chi + y) = (\chi + y, \chi + y) > 0$$

Metric Spaces

Definition (Metric Space)

Let X be a nonempty set. A function $d : X \times X \to \mathbb{R}$ denoted d(x, y) is a *metric in* X if the following properties hold for $x, y, z \in X$:

$$(x, y) > 0 \text{ if } x \neq y;$$

2 d(x, x) = 0;

$$d(x,y) \leq d(x,z) + d(z,y).$$

A nonempty set X with a metric is called a *metric space*.

Examples

 \mathbb{R}^n with Euclidean distance, \mathbb{C} with d(z, w) := |z - w|(generalizes to \mathbb{C}^n). Math 5616H: C[a, b], R[a, b], $L^2[a, b]$.

Basic Topology in Metric Spaces

Definition

(X, d) a metric space. Open ball: $B_{\delta}(x) := \{ y \in X \mid d(y, x) < \delta \}.$ $\delta > 0$ A subset $S \subset X$ is *bounded* if there is a number M > 0 such that $d(x, y) \leq M$ for all $x, y \in S$. If $S \subset X$, then $x \in X$ is called an *interior point* of S if there exists a number $\delta > 0$ such that the open ball $B_{\delta}(x) \subset S$. A subset $S \subset X$ is called an *open set* if every element of S is an interior point of S. A subset $S \subset X$ is called a *closed set* if its complement, $X \setminus S$ is open. 5=101 Note: X and \varnothing are open. Therefore, they are also closed. An

open ball $B_{\delta}(x)$ is an open set.

Boundary, Cluster, and Isolated Points; Closure

Definition

If $S \subset X$, a point $x \in X$ is called a *boundary point* of *S* if every open ball about *x* contains at least one point of *S* and at least one point of $X \setminus S$. The *boundary* of *S*, denoted ∂S , is the set of boundary points of *S*.

If $S \subset X$, a point $x \in X$ is called a *cluster point* (*accumulation point*, or *limit point*) of *S* if every open ball about *x* contains infinitely many points of *S* (or, equivalently, one point of *S* apart from *x*). A point $x \in S$ which is not a cluster point of *S* is called an *isolated point* of *S*. The *closure* of *S*:

 $\overline{S} = S \cup \{ \text{cluster points of } S \}.$

7/10

Characterization of Closed Sets

Theorem

For a subset $S \subset X$, TFAE:

- S is closed; (i.e. S is open)
- Is contains all its cluster points;

Proof. (2) \rightleftharpoons (3) clear (1) \rightleftharpoons (2) next time