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Open and Closed Sets
Compact Sets

Characterization of Closed Sets

Closure: S = S [ {cluster points of S}.

Theorem
For a subset S ⇢ X, TFAE:

1 S is closed;

2 S contains all its cluster points;

3 S = S.

Proof.
(2) , (3) obvious.
(1) , (2): {S is closed } , {X \ S is open}

, {x /2 S iff 9� >
0 : B�(x) \ S = ?} , {x 2 S iff 8� > 0 B�(x) \ S 6= ?}
, {x 2 S iff (x 2 S or 8� > 0 9y 6= x : y 2 B�(x) \ S)}
, {x 2 S iff (x 2 S or x 2 S)} , {S = S}
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X is a metric space, Stax

def
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Open and Closed Sets
Compact Sets

Double Closure

Corollary

S = S, and hence S is a closed set.

Proof.
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Open and Closed Sets
Compact Sets

Dense and Nowhere Dense Subsets

Definition

A subset S ⇢ X is dense in X if S = X . A set S is defined to be
nowhere dense if S has no interior points.

Examples
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Open and Closed Sets
Compact Sets

Union and intersection of open and closed sets

Theorem
In a metric space, the following statements are true:

1 The union of any collection of open sets is open;

2 The intersection of any finite collection of open sets is

open;

3 The intersection of any collection of closed sets is closed;

4 The union of any finite collection of closed sets is closed.

Examples
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Open and Closed Sets
Compact Sets

Proof of Theorem
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Open and Closed Sets
Compact Sets

Open Covers and Compact Sets
Definitions.

Example
(0, 1] and {(1/k , 1 + 1/k) | k 2 N}
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Open and Closed Sets
Compact Sets

Properties of Compact Sets in Metric Spaces

Theorem
If K is a compact subset of a metric space X, then K is closed

and bounded.

Remark. The converse is true for X = Rn (the Heine-Borel thm)

Examples
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