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Open and Closed Sets

Characterization of Closed Sets
X6 g rmednc spree, S<=X

Closure: S = S U {cluster points of S}.

For a subset S C X, TFAE:
@ Sisclosed;
© S contains all its cluster points;
Q@ S=5S

(2) < (3) obvious.
(1) < (2): {Sisclosed } & {X\ Sis open}
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Closure: S = S U {cluster points of S}.
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Open and Closed Sets

Characterization of Closed Sets

Closure: S = S U {cluster points of S}.

For a subset S C X, TFAE: (5 (@70', %K\(XMS :¢

@ Sis closed; = (3§ (

© S contains all its cluster points; Sv I %&’ X> NS i@
Q@ S=5S
(2) < (3) obvious. 1 (XES) = XES

(1)< (2): {Sisclosed } & {X\ Sisopen} & {x ¢ Siff 35 >
0:Bs(x)NS=02} < {xeSiff V) >0 Bs(x)NS # o}
& {xeSiff (xe Sorvé >03y # x:y e Bs(x)n S)}
< {xeSiff(xe Sorxe S)} & {S=S5} O
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Open and Closed Sets

Double Closure

Corollary

S =S, and hence S is a closed set.
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Open and Closed Sets
Dense and Nowhere Dense Subsets

A subset S c X is densein X if S = X. A set Sis defined to be
nowhere dense if S has no interior points.
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Open and Closed Sets

Union and intersection of open and closed sets

In a metric space, the following statements are true:
@ The union of any collection of open sets is open;
© The intersection of any finite collection of open sets is
open;
© The intersection of any collection of closed sets is closed;
© The union of any finite collection of closed sets is closed.
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Compact Sets

Open Covers and Compact Sets

Definitions. A C/d%c)é’u;m ﬁ,, Ob/ Xg. [‘}
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Compact Sets

Properties of Compact Sets in Metric Spaces

If K is a compact subset of a metric space X, then K is closed
and bounded.

Remark. The converse is true for X = R” (the Heine-Borel thm)

Examples

[o, 13 = R, copeet
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