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Properties of Compact Sets in Metric Spaces

If K is a compact subset of a metric space X, then K is closed
and bounded.

Remark. The converse is true for X = R" (the Heine-Borel thm)
V(’)[} Aé‘jc@ oo n—cdl
[>5’(>(> - “Z T é\—g IS REL\ »r&x X[dh)gﬂ

(P g R anchs@%m

l) \3

2/7



Proof of Theorem

Bounded: Cover X (and thereby K C X2<WIth open baIIs Bn(Xo)
of radius n € N, centered at xp € X ¥ ./' % dly )(o>< 2 A 3

Closed. Prove K¢ := X & K is open. leen a € K¢, consider
= {x e X| Mﬁ 1/k}, k € N. Then | J;>, Ok = X \ {a},
schUk1O YY) £ 4 K < X \{a]
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Closed Subsets of Compact Sets

Theorem

Let K be a closed subset of a compact metric space X. Then K
is compact. In particular, a closed subset of a compact set in
any metric space is compact. )( ' ><

Proof. Let {O,} be ano f K. Th
{0} pen cover o en CX
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The Bolzano-Weierstrass Property

Let X be a metric space. A subset A C X has the
Bolzano-Weierstrass property if every infinite subset of A has a

limit point (cluster point) that belongs to A.

Let A be a subset of a metric space (X, d). Then A is compact
iff A has the Bolzano-Weierstrass property.
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Nested Intervals

Theorem (Nested interval property)
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The Heine-Borel Theorem

Theorem

A subset K of R" is compact if and only if it is closed and
bounded.

Proof.

Next time
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