
Scratch Work

Proposition 0.0.1. Problem 6 HW6
Let (pn) be a sequence of real numbers. We have that (pn) is bounded above if and only if lim supn→∞ pn <∞.

Remark: Absolutely direct. No contraposition. No contradiction.
Remark: The following statements are equivalent: (i) sup(A) ≤M and (ii) x ≤M for every x ∈ A.
Remark: Nobody gave a proof even remotely like what I have called “using Rudin’s definition.” Rather, almost

everyone proved a contrapositive. Note that to do so is fine, but it’s also satisfying to see a direct proof, no?

Proof. (using Rudin’s definition) On the one hand, suppose that the sequence of real numbers (pn) is bounded
above. Let E denote the set of sub-sequential limits of (pn). 1 In order to show that sup(E) <∞, it suffices to show
that there exists an M ∈ R such that x ≤ M for every x ∈ E. For concreteness, let M be an arbitrary upper bound
of (pn). Thus, pn ≤M for all n. Next, give me any x ∈ E; I will show that x ≤M . By definition of E, there exists a
sub-sequence (pnk

) converging to x. Because M ≥ pn for every n, we have M ≥ pnk
for every k. Hence, letting k →∞,

2 we have M ≥ x, as required. Overall, by the preceding comments, this means sup(E) ≤M and, so, sup(E) <∞.
Conversely, suppose that lim supn→∞ pn <∞. Then, because R is Archimedean, there exists a real number L such

that lim supn→∞ pn < L. Consider any such L. Theorem 3.17 (b) of Rudin states that, as a result, we have pn ≤ L
for all n ≥ N for some N . Then, the sequence (pn) is bounded above by max{p1, . . . , pN , L}.

Proof. (using Problem 5 ) On the one hand, suppose that the sequence of real numbers (pn) is bounded above. Thus,
consider M such that pm ≤ M for every m. Then, in particular, pm ≤ M for every m ≥ n, for any n. Equivalently,
supm≥n{pn} ≤M for any n. Letting n→∞, this implies lim supm≥n{pn} = limn→∞ supm≥n{pn} ≤M , as desired.

Conversely, suppose only that lim supm≥n{pn} < ∞. If (pn) were bounded above, then we would unambiguously
be justified in employing Problem 5. However... the fact that (pn) is bounded above is exactly what we are now trying
to prove. So, this should at least make us uncomfortable. 3 We should be more careful, if we can. Actually, for this
part, we can use the exact same argument as in the preceding proof! Phew.

1 For what it’s worth, we have a theorem which says that this set is non-empty.
2 What does this mean? We are employing the following fact and trusting the reader to understand: If limk→∞ ak = a and ak ≤ L for

each k, then a ≤ L. This is a general property of convergent sequences of real numbers.
3 Note that the result in Problem 5 is, in fact, true without assuming that the sequence is bounded. However, there are subtleties which

arise. For instance, when (pn) is not bounded, it is possible that a set of the form {pn : n ≥ m} will have infinite supremum, in which
case our sequence supn≥m{pn} of which we want to take the limit has ... extended real numbers in its range. This is new. In fact, such
sequences are frequently encountered in, e.g., measure theory. But we have not encountered them yet. OK, you say, I don’t care about
that. I should be fine because, if supn≥m{pn} → L as m→∞, then supn≥m{pn} ∈ R for every m. This is true, too. The problem is that
this is an even stronger variation of the result which we are trying to prove. So, we don’t really make any progress when going down this
rabbit hole.
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