MATH 5615H: ANALYSIS A SOLUTION TO PROBLEM 1 ON HW 6

INSTRUCTOR: SASHA VORONOV

Here is a solution of Problem 1 on Homework 6.
Solution: Write down the statement that 0 is not a limit of the sequence $\left\{n a_{n}\right\}$:
(1) there is an $\epsilon>0$: for each $N \geq 1$ there is an $n \geq N: n a_{n} \geq \epsilon$.

We want to find a contradiction with this assumption. Of course, the contradiction will come from the fact that the series converges,

Let us get back to the statement about 0 not being a limit. We can find n_{1} such that $n_{1} a_{n_{1}} \geq \epsilon$, then choose $n_{2} \geq n_{1}+1$ such that $n_{2} a_{n_{2}} \geq \epsilon$, then choose $n_{3} \geq n_{2}+1$ such that $n_{3} a_{n_{3}} \geq \epsilon$, and so on. This way we will get a subsequence of $\left\{a_{n_{k}}\right\}$ such that $n_{k} a_{n_{k}} \geq \epsilon$. Then the nth partial sum $s_{n_{k}}$ of the series $\sum a_{n}$ can be estimated as follows:

$$
\begin{aligned}
& s_{n_{k}}=a_{1}+\cdots+a_{n_{1}}+a_{n_{1}+1}+\cdots+a_{n_{2}}+\cdots+a_{n_{k}} \\
& \geq n_{1} a_{n_{1}}+\left(n_{2}-n_{1}\right) a_{n_{2}}+\cdots+\left(n_{k}-n_{k-1}\right) a_{n_{k}} \\
& \geq \epsilon\left(\frac{n_{1}}{n_{1}}+\frac{n_{2}-n_{1}}{n_{2}}+\cdots+\frac{n_{k}-n_{k-1}}{n_{k}}\right)
\end{aligned}
$$

Here in the first inequality we used the fact that $a_{n} \geq a_{n+1}$ for all n, and the second inequality came from the assumption about 0 not being a limit of $\left\{a_{n}\right\}$. We need to estimate the result so as to see that the series diverges.

Digression: One estimate can be done like that: since $n_{1}<n_{2}<$ $\cdots<n_{k}$, we have

$$
s_{n_{k}} \geq \epsilon\left(\frac{n_{1}}{n_{k}}+\frac{n_{2}-n_{1}}{n_{k}}+\cdots+\frac{n_{k}-n_{k-1}}{n_{k}}\right)=\epsilon \frac{n_{k}}{n_{k}}=\epsilon
$$

Unfortunately, this does not contradict the convergence of the series. Therefore, we need to look for a finer estimate.

Let us continue with

$$
\begin{equation*}
s_{n_{k}} \geq \epsilon\left(\frac{n_{1}}{n_{1}}+\frac{n_{2}-n_{1}}{n_{2}}+\cdots+\frac{n_{k}-n_{k-1}}{n_{k}}\right)=\epsilon\left(1+\left(1-\frac{n_{1}}{n_{2}}\right)+\cdots+\left(1-\frac{n_{k-1}}{n_{k}}\right)\right) \tag{2}
\end{equation*}
$$

Date: October 31, 2020.

Digression: If we had ($1+$ something) instead of ($1-$ something), we would have $s_{n_{k}} \geq \epsilon k$, which would grow unboundedly. Unfortunately with the minuses, it does not work. We need to fine tune the estimate for $s_{n_{k}}$.

Note that we can use the fact that in (1) for any $N \geq 1$, there exists an n, in a better way. Namely, each time choosing n_{i+1} using (1), we can make sure it is at least $2 n_{i}$.

Digression: How can you arrive at this choice? You stare at the estimate (2) and try to see, if there might be a reason why the last sum grows unboundedly. There is no immediate reason: for instance, all the n_{i-1} 's can be as close to their respective n_{i} 's as being adjacent, in which case n_{i-1} / n_{i} will be close to 1 , and the i th term in the sum will be close to $1 / n_{i}$, i.e., too small. However, in this case, that is to say, if the n_{i} 's happened to be successive naturals, the partial sum will be a partial sum of the harmonic series $\sum 1 / n$, which also diverges, but then there is a question about how to deal with intermediate situations, when the n_{i} 's are not too close to each other and not too far. Thus, it is better to try to see if fiddling with the choice of n_{i} 's, one can make each term in (2) large enough. How large? No way to make them larger then 1 . On the other hand, 0 is not large enough. What is the most natural choice then? One half.

So, choosing $n_{i+1} \geq 2 n_{i}$ as per (1), we get

$$
1-\frac{n_{i}}{n_{i+1}} \geq 1-\frac{n_{i}}{2 n_{i}}=\frac{1}{2}
$$

and

$$
s_{n_{k}}>\frac{\epsilon k}{2} .
$$

This implies that the sequence of partial sums diverges and so does the series.

