
Math 5615H Solutions to Midterm Exam 1
Posted: 10/27
Rules: Unlike working on your homework, no study groups or
cooperation when doing the exam, no asking questions on in-
ternet forums, etc.! You may use any textbooks and internet
sources, but just copying arguments you might occasionally
find will not gain any credit and will be regarded as plagia-
rism. You have to present all solutions in your own words.

Regarding justifying your solutions: You may use any state-
ment stated in class or in our textbook, baby Rudin, or stated
in the homework, unless it makes your solution ridiculous,
such as “Stated in class.” You may also use one exam prob-
lem in your solution of another exam problem. You may use
whatever theorems of algebra you wish to use.

You should also write on your paper the following honor
pledge: “I pledge my honor that I have not violated the Honor
Code during this examination” and sign your name under it.

Problem 1. Prove that the set of algebraic numbers, i.e., the set of
complex numbers that are roots of non-zero polynomials in one variable
with rational coefficients, is countable.

Solution. The set Pn = {a0 + a1z + · · · + anz
n} of polynomials of

degree ≤ n with rational coefficients ai is countable, being equivalent
to Qn+1 = {(a0, a1, . . . , an)}, which is countable as a Cartesian product
of countable sets. The set P of all polynomials is the union of Pn’s over
n ∈ N, a countable union of countable sets, and is thereby countable. If
we remove the zero polynomial from it, the remaining set is an infinite
subset of the countable set P and is therefore countable. The set of
algebraic numbers, usually denoted Q̄, is the set of roots of nonzero
polynomials with rational coefficients:

Q̄ =
⋃

p∈P\{0}

{z ∈ C | p(z) = 0}.

Since for each p ∈ P the set {z ∈ C | p(z) = 0} of its roots is finite, we
get a countable union of finite sets. Such a union has to be countable,
unless it is finite, which is obviously not the case, as every rational is
an algebraic number.

Problem 2. Describe all the automorphisms of the field C of complex
numbers that fix R pointwise, i.e., σ : C ∼−→ C such that σ(x) = x for
all x ∈ R.

Solution. Let σ be such an automorphism. Since σ respects ad-
dition and multiplication and fixes the real numbers, for a complex
number a + bi, we have σ(a + bi) = a + bσ(i). Thus, σ is determined
by σ(i). But −1 = σ(−1) = σ(i2) = (σ(i))2 and σ(i) must square to
−1, that is to say, must be a solution of the equation z2 + 1 = 0. This
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equation has two solutions i and −i. Thus, σ(i) = i or σ(i) = −i. In
the first case, σ = id, because σ(a + bi) = a + bi. In the second case,
σ(a+ bi) = a− bi, which is known as complex conjugation.

So far, we know that if σ is an automorphism, it must act on complex
numbers as either identity, or complex conjugation. If these two are
indeed automorphisms of C fixing each real number, then these two
maps σ will provide a complete answer. The identity id(z) = z if
obviously an automorphism, whereas complex conjugation σ(z) = z̄ is
also an automorphism, given that it takes 0 to 0, 1 to 1, and z + w =
z̄ + w̄ and zw = z̄w̄.

Problem 3. If U is an open set of R, then there is an at most countable
collection of disjoint open intervals In, n = 1, 2, . . . such that U =⋃
n≥1 In.

Solution. Given an open set U , Q ∩ U ⊂ Q is countable, unless
U = ∅. In the latter case, the result is trivially true. So, assume U 6=
∅. Let us enumerate the rationals contained in it: r1, r2, . . . , rn, . . . .
For each n ≥ 1, take the “largest” open interval In ⊂ U containing rn.
More precisely, define

In := (an, bn),

where

an = inf{a | ∃b : rn ∈ (a, b) ⊂ U},
bn = sup{b | ∃a : rn ∈ (a, b) ⊂ U}.

For every real x ∈ U , there is an open interval (a′, b′) such that x ∈
(a′, b′) ⊂ U , because U is open. Therefore the above sets whose infimum
and supremum we have taken are nonempty. There is nothing wrong
if an = −∞ or bn = ∞: (an, bn) would still be an open interval.
Therefore, these infimum and supremum exist in R ∪ {±∞} for each
n.

For the same reason, every real x ∈ U will be in one of those intervals
In, because (a′, b′) will contain at least one of the rationals rn, given
that they are dense in R, and x ∈ (a′, b′) ⊂ (an, bn). Thus,⋃

n≥1

In = U.

By construction, two intervals Im and In will have to coincide if they
happen to intersect. Thus, if we drop the repeating terms in

⋃
n≥1 In,

we get an at most countable union of disjoint intervals with the same
property:

⋃
n≥1 In = U .
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Problem 4 (Ashmita Sarma). Show that the closed unit ball {x ∈
R∞ | d(x, 0) ≤ 1} in R∞ is closed and bounded but not compact.
Here R∞ :=

⋃
n≥1Rn, where Rn ⊂ Rn+1 is given by (x1, . . . , xn) 7→

(x1, . . . , xn, 0). The distance function d(x, y) for x, y ∈ R∞ is defined
as the distance in Rn with n large enough so that both x and y are in
Rn. Assume that the distance function is independent of the choice of
n and defines the structure of a metric space.

Solution. The closed unit ball B̄ in R∞ is closed, because its
complement is open. Indeed, every point x ∈ R∞ \ B̄ will have an
open ball B′ about it such that B′ ∩ B̄ = ∅: just take the open
ball B′ = Bδ(x) or radius δ = d(x, 0) − 1; then for each y ∈ B′,
we have d(0, y) + d(y, x) ≥ d(0, x) by the triangle inequality, whence
d(0, y) ≥ d(0, x)− d(y, x) > d(0, x)− δ = 1, meaning y 6∈ B̄.

The closed unit ball is bounded, because it is contained in a closed
ball, namely itself.

If B̄ were compact, it would satisfy the Bolzano-Weierstrass (BW)
property, that is to say, each infinite subset in B̄ would have a cluster
point in B̄. However, the collection of points

xn := (0, 0, . . . , 0, 1, 0, 0, . . . ), 1 in the nth component, n ≥ 1,

in B̄ will not have a cluster point not only in B̄ but in R∞. This is
because infinitely many of these points will have to sit in an open ball
of radius 1/2 about the cluster point and, therefore, be at distance
strictly less than 1 to each other, whereas d(xm, xn) = 1 as long as
m 6= n.

Problem 5. Prove that if a subset K ⊂ X of a metric space X has the
Bolzano-Weierstrass property, i.e., every infinite subset of K has a limit
point (cluster point) in K, then K is compact. Hint : You may assume
the homework problem on the existence of a(n at most) countable base
of K and show that any open cover of K has an at most countable
subcover, say {Un | n ∈ N}. Show that this cover must actually be
finite by contradiction: if no finite subcollection of {Un} covers K,
then each of the nested sequence of sets Fn := K \ (U1∪ · · · ∪Un) must
be nonempty, while

⋂
n≥1 Fn must be empty. Take an infinite set E

which contains a point from each Fn, consider a cluster point, and get
a contradiction.

Solution. Let {On | n ∈ J}, where J = JN = {1, 2, . . . , N} or
J = N, be a countable base of K guaranteed by the homework problem.
Given an open cover {Vα | α ∈ A} of K, we can choose one α = α(n) ∈
A for every n ∈ J in such a way that On ⊂ Vα(n). (If for a given n,
there is no such α(n), we will skip that n.) Since {On} is a countable
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base for K, every point of K will be in at least one of these On’s and,
therefore, in at least one Vα(n). Now, the set of α(n)’s for n ∈ J ′, where
J ′ := J less the n’s we skipped above, is the image of a subset of J ,
which is at most countable. Therefore, the set of α(n)’s must be at
most countable, too. This way, we get an at most countable subcover
{Un := Vα(n) | n ∈ J ′} of the given open cover {Vα}. If the subcover is
finite, we are done. Let us assume it is countable: {Un | n ∈ N}.

Suppose no finite subcover of {Un} covers K for a contradiction.
Then each set Fn := K \ (U1 ∪ · · · ∪ Un) must be nonempty, while⋂
n≥1 Fn = K \

⋃
n≥1 Un must be empty. Note that Fn+1 ⊂ Fn for each

n, i.e., the sets are nested. Form a set E by taking a point xn ∈ Fn
for each n. This set cannot be finite, because otherwise one of the
points xn will be in

⋂
n≥1 Fn, which is empty. By the BW assumption,

the set E has a cluster point x in K. Since {Un} covers K, there
is some n such that x ∈ Un. There is an open ball in X centered
at x and contained in Un, because Un is open. The set Un does not
intersect Fn = K \ (U1 ∪ · · · ∪ Un) and all the Fm’s for m ≥ n, as
they are contained in Fn. Therefore, the open ball centered at x does
not intersect these Fm’s and hence cannot contain points xm for any
m ≥ n. This contradicts the fact that x is a cluster point of the set E
of all xk’s.

Problem 6. Recall that we used ternary representation of real num-
bers in the closed interval [0, 1] with the convention that infinite tails
of 2’s were allowed only in the following cases: we were using the tail
. . . 0222 . . . instead of the tail . . . 1000 . . . A ternary (base-3) expansion

(1) 0.b1b2b3 . . . with bi = 0, 1, or 2

represents the number

sup{
n∑
j=1

bj/3
j | n ∈ N}.

Show that the Cantor set C consists of all the numbers in [0, 1] whose
ternary expansion as above has only 0’s and 2’s:

C = {x = 0.b1b2b3 · · · ∈ [0, 1] | bi = 0 or 2}.

Hint : Analyze the excluded sets D1, D2, . . . using ternary expansions
(1): describe all the ternary expansions for numbers that lie in D1,
then for numbers that lie in D2, etc.

Solution. The set D1 = (1/3, 2/3) consists precisely of those reals
x whose ternary expansion (with our current assumption on the tails)
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is

x = 0.1b2b3 . . . ,

because 1/3 = 0.1000 . . . and 2/3 = 0.2000 . . . . Since 1/3 itself is
replaced with 0.0222 . . . , points x in C1 = [0, 1] \ D1 will be exactly
those which have b1 6= 1.

The setD2 is the union (1/9, 2/9)∪(7/9, 8/9) of the two middle thirds
of the remaining two intervals [0, 1/3] and [2/3, 1] in C1 = [0, 1] \ D1.
For numbers x ∈ [0, 1/3], b1 = 0 and, for x ∈ [2/3, 1], b1 = 2. Which
third of each of these two closed intervals x belongs to is characterized
by the second ternary digit, called trit, b2: b2 = 1 precisely when x is in
the open middle third of either closed interval. Thus, x ∈ D2 iff b1 6= 1
and b2 = 1. Note that the elements of C2 = C1 \D2 are precisely those
x for which b1 6= 1 and b2 6= 1.

Inductively, if we know that x ∈ Dn are characterized by b1, b2, . . . ,
bn−1 6= 1 and bn = 1 and the elements of Cn = Cn−1 \Dn are character-
ized precisely by b1, . . . , bn 6= 1, then the elements of the middle thirds
of the closed intervals comprising Cn will be those x ∈ Cn for which
bn+1 = 1. These are exactly the elements of Dn+1. Whence, the ele-
ments of Cn+1 = Cn\Dn+1 are exactly those for which b1, . . . , bn, bn+1 6=
1.

Thus, points of C =
⋂∞
n=0Cn are precisely those x for which all the

trits bn 6= 1.

Problem 7. Show that intervals in R (defined as [a, b], (a, b), [a, b),
(a, b] for a, b ∈ R ∪ {±∞}) are exactly those subsets I of R which
contain all their intermediate points, i.e., ∀x, y, z ∈ R such that x <
y < z and x, z ∈ I, we have y ∈ I. (“Exactly those” is an “if and
only if” statement. It means show that the intervals contain all their
intermediate points and every set which contains all its intermediate
points must be an interval.)

Solution. (1) If I is an interval 〈a, b〉, where 〈 is ( or [ and 〉 is )
or ], and a, b ∈ R ∪ {±∞}, let us show I contains all its intermediate
points. Indeed, whenever for x, y, z ∈ R, x < y < z with x, y ∈ I, we
will at least have a ≤ x < z ≤ b. This implies that a < y < b, i.e.,
y ∈ (a, b) ⊂ 〈a, b〉.

(2) Suppose I ⊂ R contains all its intermediate points. Take a :=
inf I and b := sup I. Let us allow them to be ±∞. Then these infimum
and supremum will always exist, unless I = ∅, in which case I = ∅ =
[1, 0] is trivially an interval. Let us first show that (a, b) ⊂ I. If
y ∈ (a, b), then there exists x ∈ I such that a ≤ x < y. Otherwise,
y would be a greater lower bound of I than a. Similarly, there exists



6

z ∈ I such that y < z ≤ b. Since I contains all its intermediate points,
y must also be in I. Therefore, we see that (a, b) ⊂ I.

By construction, I may possibly differ from (a, b) by containing one
or both points a and b. Thus, I = 〈a, b〉 with conventions as in Part
(1) of this solution.


