
Math 5615H, Fall 2020 Solutions to Midterm Exam 2
Posted: 12/16

Rules: Unlike working on your homework, no study groups or
cooperation when doing the exam, no asking questions on in-
ternet forums, etc.! You may use any textbooks and internet
sources, but just copying arguments you might occasionally
find will not gain any credit and will be regarded as plagia-
rism. You have to present all solutions in your own words.

Regarding justifying your solutions: You may use any state-
ment stated in class or in our textbook, baby Rudin, or stated
in the homework, unless it makes your solution ridiculous,
such as “Stated in class.” You may also use one exam prob-
lem in your solution of another exam problem. You may use
whatever theorems of algebra you wish to use.

You should also write on your paper the following honor
pledge: “I pledge my honor that I have not violated the Honor
Code during this examination” and sign your name under it.

Problem 1. Define a sequence {an}n≥1 recursively by a1 = 1/2 and
an+1 = an + a2n. Show that limn→∞ an = +∞.

Solution. This is obviously (an+1 = an + a2n ≥ an) a monotone
increasing sequence, and by a famous theorem, it has a finite limit
L, if the sequence happens to be bounded above. In this case, L =
limn→∞ an = limn→∞ an+1, because {an+1} is a subsequence of a con-
verging sequence, and limn→∞ an +a2n = L+L2 by theorems on adding
and multiplying conerging sequences. Therefore, L = L + L2, whence
L = 0, but this contradicts an ≥ a1 = 1/2. Thus, it cannot happen
that {an} is bounded above.

Now, an unbounded above monotone increasing sequence must have
an infinite limit, because if one element aN > M , then an > M for all
n ≥ N .

Problem 2. Let {an} be a sequence of positive real numbers. Suppose
that the series

∑∞
n=1 a

2
n converges. Show that the series

∑∞
n=1 anan+1

also converges.

Solution. Note that for each n, 0 ≥ 2anan+1 ≤ a2n + a2n+1, because
(an − an+1)

2 ≥ 0. The series
∑∞

n=1 a
2
n + a2n+1 converges as the sum

of two convergent series. This implies that the series
∑∞

n=1 2anan+1

converges by the comparison test. Therefeore,
∑∞

n=1 anan+1 converges
a convergent series multiplied by a constant.

Problem 3. Let

f(x) =

{
x if x is rational,

1− x if x is irrational.
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At which points x ∈ R is the function f continuous? Justify your
answer using the ε-δ definition of continuity.

Solution. Since the rational and irrational numbers are dense among
the reals, we feel that the function is continuous exactly when x = 1−x,
i.e., x = 1/2. Let us prove that with ε and δ, as required.

At x = 1/2, given an ε > 0, take δ = ε. Then for each x such that
|x− 1/2| < δ, we have

|f(x)− f(1/2)| =

{
|x− 1/2|, if x ∈ Q,
|1− x− 1/2|, if x 6∈ Q,

= |x− 1/2| < δ = ε,

and we are done with x = 1/2.
Suppose a 6= 1/2. Let us prove f(x) is not continuous at a, that is

to say, there exists an ε > 0 such that for any δ > 0, there is an x such
that |x− a| < δ but |f(x)− f(a)| ≥ ε.

Take ε := |a−(1−a)|/2 = |a−1/2|, which is greater than 0, because
a 6= 1/2. (The idea is to take ε to be small enough as compared to
the difference of the values of the functions x and 1 − x out of which
f(x) is built. You might need to experiment with what should be small
enough before arriving at a formula, as the one above.) Given a δ > 0,
take an irrational x closer to a than min(ε, δ), if a is rational, or a
rational x closer to a than min(ε, δ), if a is irrational. This is possible
because of the density of Q and R \ Q in R. (The motivation is that
we want to take x close to a but such that the value of f(x) is further
away from f(a). If x and a belong to the same subset, be it Q or R\Q,
of R, then f(x) and f(a) will be given by the same polynomial formula
and be too close to each other.) Then, either way,

|f(x)− f(a)| = |1− x− a| = |1− 2a− (x− a)|
≥ ||1− 2a| − |x− a|| = |2ε− |x− a|| = 2ε− |x− a| > 2ε− ε = ε.

Problem 4. Suppose that f : R → R and (f(x) − f(y))2 ≤ |x − y|3
for all x and y. Prove that f is constant.

Solution. We feel like the inequality should force the derivative of
f to exist and be equal to 0 everywhere, which is what we are going to
show. For x 6= y, we have

0 ≤ (f(x)− f(y))2

(x− y)2
≤ |x− y|
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and therefore, after taking the square root,

0 ≤
∣∣∣∣f(x)− f(y)

x− y

∣∣∣∣ ≤√|x− y|.
Since limx→y

√
|x− y| = 0 (from

√
x being continuous on the right at

0), the Squeeze thereom implies that the following limit exists and is
equal to zero:

lim
x→y

∣∣∣∣f(x)− f(y)

x− y

∣∣∣∣ = 0.

For any function g(x), limx→y g(x) exists and equals 0 if and only if
limx→y|g(x)| exists and equals 0, because ||g(x)| − 0| = |g(x) − 0|.
Therefore, limx→y

f(x)−f(y)
x−y exists and equals 0, whence f ′(y) exists and

equals 0 for every y, and the function f is constant by a corollary of
the Mean Value Theorem (MVT).

Problem 5. Let f : [a, b] → R be a function. We say f is convex on
[a, b] if l(x) > f(x) for all x ∈ (a, b), where l(x) := m(x − a) + f(a),
with m = (f(b) − f(a))/(b − a), is the line from (a, f(a)) to (b, f(b)).
Prove that if f is continuous on [a, b], is differentiable on (a, b), and f ′

is strictly increasing on (a, b), then f is convex on [a, b].

Solution. (This is a somewhat different solution, as compared to the
one given in class on 12/16, just for the fun of it.) Form g(x) := l(x)−
f(x), motivated by the proof of the MVT. We have g(a) = 0 = g(b),
g is continuous on [a, b], differentiable on (a, b), and g′(x) = m− f ′(x)
must be strictly decreasing. All we need is to show that g(x) > 0 on
(a, b).

It looks like g is set for applying Rolle’s theorem, which says there
is a c ∈ (a, b) such that g′(c) = 0. Then for each x ∈ (a, c), we have
g′(x) > 0 and for each x ∈ (c, b), we have g′(x) < 0, because of the
monotonicity condition. By the MVT, for each y ∈ (a, c], g(y) = g(y)−
g(a) = g′(c1)(y − a) > 0 and for each y ∈ [c, b), g(y) = g(y) − g(b) =
g′(c2)(y − b) > 0. Thus, g(y) > 0 for all y ∈ (a, b).


