Posted: 11/14; Updated 11/19; due: Friday, 11/21/2014
The problem set is due at the beginning of the class on Friday.
Reading: Chapter 5: pages 103-109.
For this homework, you may assume that $(\sqrt{x})^{\prime}=1 /(2 \sqrt{x}), \sin ^{\prime} x=\cos x$ and similar computations known to you from calculus.

Problem 1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
f(x)= \begin{cases}x^{2}, & \text { if } x \text { is rational } \\ 0, & \text { if } x \text { is irrational }\end{cases}
$$

At which points is the function differentiable?
Problem 2. Give the critique of (i.e., find a gap in) the following supposed "proof" of the chain rule:

$$
\begin{aligned}
& \lim _{t \rightarrow x} \frac{g(f(t))-g(f(x))}{t-x}=\lim _{t \rightarrow x} \frac{g(f(t))-g(f(x))}{f(t)-f(x)} \frac{f(t)-f(x)}{t-x} \\
&=\left(\lim _{t \rightarrow x} \frac{g(f(t))-g(f(x))}{f(t)-f(x)}\right)\left(\lim _{t \rightarrow x} \frac{f(t)-f(x)}{t-x}\right) \\
&=g^{\prime}(f(x)) f^{\prime}(x)
\end{aligned}
$$

Problem 3. Consider the function

$$
f(x)= \begin{cases}2 x^{2} \sin (1 / x)+x, & x \neq 0 \\ 0, & x=0\end{cases}
$$

Show that f has a positive derivative at $x=0$ but is not monotonically increasing in any neighborhood of $x=0$.
Problem 4. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is a function whose derivative exists at each point and is bounded. Show that f is uniformly continuous.

Problem 5. (1) Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and $\lim _{|x| \rightarrow+\infty} f(x)=$ 0 . Prove that f is uniformly continuous.
(2) Find a bounded function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that f is differentiable at every point and uniformly continuous, but f^{\prime} is not bounded. Hint: Make use of Part (1). Note that the derivative must oscillate between large positive and negative values as $|x| \rightarrow \infty$, because if, say, f^{\prime} just grows unboundedly with $x \rightarrow+\infty$, then it should force f to do the same. For instance, try to see why $\sin x / x$ does not work and cook something based on that.
Problem 6. (1) Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ and $|f(x)| \leq x^{2}$ for all x. Prove that f is differentiable at $x=0$.
(2) Find a function $f: \mathbb{R} \rightarrow \mathbb{R}$ that is differentiable at one point and not continuous at any other point.

Problem 7. Suppose that f is differentiable at each point of (a, b) and its derivative is never 0 . Prove that f is strictly increasing or strictly decreasing on the interval. (Note that f^{\prime} is not assumed to be continuous.)

Problem 8. Suppose f is a real-valued function on $(0,+\infty)$ with the properties:
(1) $f(x y)=f(x)+f(y)$ for all positive x and y;
(2) $f^{\prime}(1)$ exists and equals 1.

Prove that $f(1)=0$ and $f^{\prime}(x)$ exists and equals $1 / x$ for all $x>0$. Hint: For the second statement, do $x+h=x(1+h / x)$.

