Math 5615H
Posted: 11/22; Updated: 11/26; due: Monday, 12/1/2014
The problem set is due at the beginning of the class on Monday after the Thanksgiving Break.
Reading: Chapter 5: pages 109-113.
For this homework, you may assume that $(\sqrt{x})^{\prime}=1 /(2 \sqrt{x}), \sin ^{\prime} x=$ $\cos x$ and similar computations known to you from calculus.

Problem 1. (1) $\lim _{x \rightarrow 1} \frac{x \log x}{e^{x}-e}$;
(2) $\lim _{x \rightarrow 0} x^{-a} \log x, \quad a>0$;
(3) $\lim _{h \rightarrow 0} \frac{f(x+h)+f(x-h)-2 f(x)}{h^{2}}$, provided $f^{\prime \prime}(x)$ exists and is continuous at and near x.

Problem 2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
f(x)= \begin{cases}e^{-1 / x^{2}}, & \text { if } x \neq 0 \\ 0, & \text { if } x=0\end{cases}
$$

Show that $f^{(n)}(0)=0$ for all $n \geq 0$. Hint: Use induction on n and L'Hôpital's rule after a change of variables $y=1 / h$.

Problem 3. Find the Taylor expansions of the following functions $f(x)$ about the indicated points to the indicated term:
(1) $\sin x$ about $x_{0}=\pi$ to the general, nth term;
(2) $\frac{1}{x-1}$ about $x_{0}=-1$ to the nth term;
(3) $e^{-1 / x^{2}}, f(0)=0$, about $x_{0}=0$ to the nth term;
(4) $\sqrt{x^{2}+1}$ about $x_{0}=2$ to the sixth term.

Problem 4. (1) Suppose that $f^{\prime \prime}$ exists and is continuous on (a, b), $f^{\prime}\left(x_{0}\right)=0$ and $f^{\prime \prime}\left(x_{0}\right)>0$ for some $x_{0} \in(a, b)$. Show that f has a local minimum at x_{0}.
(2) Suppose that $f^{(n)}$ exists and is continuous on $(a, b), f^{(k)}\left(x_{0}\right)=0$ for $1 \leq k \leq n-1$ and $f^{(n)}\left(x_{0}\right) \neq 0$ for some $x_{0} \in(a, b)$. Under what conditions on n can you say that f must have a local extremum at x_{0} ?

Problem 5. Prove that $\lim _{x \rightarrow+\infty} x^{n} e^{-x}=0$ for every $n \in \mathbb{N}$ in two ways: using l'Hôpital's rule and Taylor's theorem.

Problem 6. Suppose that $f:[0,1] \rightarrow \mathbb{R}$ is continuous and $f(0)=$ $f(1)=0$. Suppose that $f^{\prime \prime}$ exists and $f^{\prime \prime}(x) \geq 0$ at each point x of $(0,1)$. Prove that $f(x) \leq 0$ for all $x \in(0,1)$.

Problem 7. Suppose that $f:(a, b) \rightarrow \mathbb{R}$ and $f^{\prime \prime}$ exists and $f^{\prime \prime}(x) \geq 0$ at each point x of (a, b). Prove that f is convex, i.e., $f(t x+(1-t) y) \leq$ $t f(x)+(1-t) f(y)$ for all $x, y \in(a, b)$ and each $t \in(0,1)$.

