Math 5615H
Homework 3
Posted: 12:30 a.m., 09/20, modified on 09/24; due: Friday, 09/26/2014
The problem set is due at the beginning of the class on Friday.
Reading: Chapter 2: pages 24-37
Problems:

1. Suppose a set A is infinite and B is countable. Show that $A \cup B \sim A$. Hint: Start with selecting a countable subset in A.
2. Reproduce and complete the argument we had in class (see also a very sketchy note in the text after Theorem 2.14) to show that $|[0,1)|=$ $2^{\aleph_{0}}$, where by definition $|A|$ is the cardinality of $A, \aleph_{0}:=|\mathbb{N}|$, and $2^{|A|}:=|P(A)|$, the cardinality of the set $P(A)$ of all subsets of A, for any set A.
3. Show that $\mathbf{c}=2^{\aleph_{0}}$, where by definition $\mathbf{c}:=|\mathbb{R}|$.
4. If $\left|A_{n}\right|=\mathbf{c}$ for all $n \geq 1$ under the notation of the previous problem, then the countable disjoint union $\coprod_{n \geq 1} A_{n}$ has the same cardinality c.
5. What is the cardinality of the irrationals?
6. Prove that the following sets are open:
(1) the first quadrant $\left\{(x, y) \in \mathbb{R}^{2} \mid x>0\right.$ and $\left.y>0\right\}$;
(2) any subset of the discrete metric space.
7. Find an infinite collection of distinct open sets in \mathbb{R} whose intersection is a nonempty open set. (Thus infinite intersections of open sets may or may not be open.)
8. Show that \mathbb{Q} as a subset of \mathbb{R} is neither open, nor closed.
9. Show that the closure of set A in a metric space is the intersection of all the closed sets which contain A.
