Math 5615H
Posted: 11:30 p.m., 10/10, typo corrected: 10/12; due: Friday, 10/17/2014
The problem set is due at the beginning of the class on Friday.
Reading: Chapter 3: pages 47-55.
Problem 1. Let A be a subset of \mathbb{R} such that $\inf A=3$ and let $B=\left\{x^{2} \mid x \in A\right\}$, the set of squares of numbers from A. Show that $\inf B=9$.

Problem 2. Suppose x and y are two points in a metric space, such that $d(x, y)<\frac{1}{n}$ for any natural n. Show that $x=y$.
Problem 3. Suppose a set A is infinite, B is finite, and $A \cap B=\emptyset$. Show that the following cardinalities are equal: $|A \cup B|=|A|$, i.e., show that $A \cup B$ is equivalent to A.
Problem 4. Show that the set of limit points of a subset of a metric space is closed.

Problem 5. Show that $[0,1] \backslash\{$ Cantor set $\}$ is dense in $[0,1]$.
Problem 6. If A is a connected set in a metric space, show that its closure \bar{A} is also connected.

Problem 7. Let $\left\{p_{n}\right\}$ be a Cauchy sequence in a discrete metric space X. Figure out what it might mean that such a sequence is eventually constant and show that it actually is.

Problem 8. Is any discrete metric space complete? Explain your answer.

Problem 9. Suppose that $\left\{p_{n}\right\}$ is a sequence of real numbers with limit p and $a \leq p_{n} \leq b$ for all n. Prove that $a \leq p \leq b$.

