
MATH 5615H: HONORS ANALYSIS

SAMPLE FINAL EXAM (PART I)

NOW, WITH SELECTED SOLUTIONS

INSTRUCTOR: SASHA VORONOV

You may not use a calculator, notes, books, etc. Only the exam paper,
scratch paper, and a pencil or pen may be kept on your desk during the
test. You must show all work.

Good luck!

Problem 1. Let x1 be a real number, x1 > 1, and let xn+1 = 2− 1/xn for
n ∈ N. Show that the sequence {xn} is monotone and bounded and find its
limit.

Problem 2. Is there a metric space which is countable and compact?

Problem 3. Assume that f(x) is defined a real-valued for x > 0. Consider
two statements:

(1) For every m ∈ N, x > 1/m implies f(x) < 1/m.
(2) x > 0 implies f(x) ≤ 0.

Prove that (1) implies (2).

Problem 4. Prove or disprove the following statements with a precise ε-δ
argument for each.

(1) The function f(x) = x is uniformly continuous for all real x.
(2) The function g(x) = sinx is uniformly continuous for all real x.

Solution. Answer : Uniformly continuous. Given an ε > 0, take
δ = min ε/2, π/2, 1 > 0. Then for any h such that |h| < δ, we have
• |sinh| ≤ |h|: |sinh| is the shortest distance from the point |h|

radians, which will be in the first quadrant, because |h| < π/2,
on the unit circle to the x axis, whereas |h| is the length of the
path along the circle;
• 0 < 1− cosh = 2 sin2(h/2) ≤ h2/2 < |h|/2, because |h| < 1.

Thus, |sin(x + h) − sinx| = |sinx(cosh − 1) − sinh cosx| ≤ |sinx| ·
|cosh − 1| + |sinh| · |sinx| ≤ 1 − cosh + |sinh| < |h|/2 + |h| <
ε/4 + ε/2 < ε. �

(3) The function (f · g)(x) = x sinx is uniformly continuous for all real
x.
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Solution. Answer : Not uniformly continuous. Take ε = 1. Then for any
given δ > 0, take δ1 = min(π/2, δ/2) > 0 and n ∈ N such that 2πn sin δ1 > 1.
Such n exists because we can apply the Archimedean principle to 2π sin δ1
which is > 0, given that we made sure that 0 < δ1 < π/2. Then take
x = 2πn and y = 2πn + δ1. Then |x − y| = δ1 < δ, but |x sinx − ysiny| =
|y sin y| = (2πn+ δ1) sin δ1 > 2πn sin δ1 > 1. �

Problem 5. Prove that if a power series
∑∞

n=0 cnz
n converges for some

z = z0 6= 0 ∈ C, then
∑∞

n=0 cnz
n converges absolutely for all z ∈ C with

|z| < |z0|. What does this say about the radius of convergence of the series?
Use this to show that the radius of convergence of the exponential series∑∞

n=0 z
n/n! is +∞.

Solution. Apply the Root Divergence Test (Theorem 3.33 (b), not (a) or
(c)!) to the convergent series

∑∞
n=0 cnz

n
0 :

(0.1) lim sup
n→∞

n
√
|cn||z0| ≤ 1,

because otherwise the series would diverge. (We had to use lim sup, rather
than lim, because lim does not always exist, whereas lim sup does, at least
in the extended real system. This problem with lim would render the con-
clusion limn→∞

n
√
|cn||z0| ≤ 1 to be simply incorrect: how can you dare

to compare something that does not always exist with number 1?) Well,

anyway, if |z| < |z0|, then lim supn→∞
n
√
|cn||z| < lim supn→∞

n
√
|cn||z0|,

whence lim supn→∞
n
√
|cn||z| < 1 and thereby, applying the Root Conver-

gence Test (Theorem 3.33 (a), finally!) to the series
∑∞

n=0|cnzn|, we see
that the series

∑∞
n=0 cnz

n converges absolutely.

Remark. We could have directly used Theorem 3.39 about divergence of
power series to conclude from the convergence of the power series at z = z0
that |z0| ≤ R, where R is the radius of convergence. The same theorem
would then imply that the power series converges absolutely for |z| < |z0|,
because in this case |z| < R. I have put together the above, longer argument,
because it uses more elementary facts and is more instructive.

The radius of convergence is, by definition, R = 1/ lim supn→∞
n
√
|cn|.

Because of Inequality (0.1), we have R ≥ |z0|.
For the exponential series, apply the Ratio Test (Theorem 3.34 (a)) to

see that the exponential series converges for any z = z0 6= 0 ∈ C. The test
applies, because

lim
n→∞

|an+1|
|an|

= lim
n→∞

|n!zn+1
0 |

|(n+ 1)!zn0 |
= lim

n→∞

|z0|
n+ 1

= 0 < 1,

meaning “exists and equals 0,” as always. (This inequality yields lim supn→∞
|an+1/an| = limn→∞|an+1/an| < 1.) Thus, by the above, the radius of con-
vergence R of the exponential series is at least |z0| for any z0 6= 0 ∈ C. The
only extended real number which satisfies this is R = +∞. �


