MATH 5615H: ANALYSIS A SOLUTION TO PROBLEM 6(2) ON HW 9

INSTRUCTOR: SASHA VORONOV

Here is a solution of Problem 6(2) on Homework 9.
Solution: We define $g(q):=\lim _{p \rightarrow q} f(p)$ for each $q \in \bar{A}$. Since $f(p)$ is continuous on $A, g(p)=f(p)$ for each $p \in A$. The limit exists, because for any sequence $\left\{p_{n}\right\} \subset A$ converging to $q \in \bar{A}$, the sequence $\left\{f\left(p_{n}\right)\right\}$ will converge in \mathbb{R}, as $\left\{p_{n}\right\}$ is a Cauchy sequence, and so is $\left\{f\left(p_{n}\right)\right\}$ by Part (1).

We need to show that g is continuous on \bar{A}. Let us do it using the definition. For each point $q \in \bar{A}$, given $\varepsilon>0$, we need to find a $\delta>0$ such that $|g(p)-g(q)|<\varepsilon$ whenever $|p-q|<\delta$ and $p \in \bar{A}$. Start with a $\delta_{1}>0$ such that $\left|f\left(p^{\prime}\right)-g(q)\right|<\varepsilon / 2$ whenever $0<\left|p^{\prime}-q\right|<\delta_{1}$ and $p^{\prime} \in A$. Such δ_{1} exists, because $g(q)=\lim _{p^{\prime} \rightarrow q} f\left(p^{\prime}\right)$. Note also that if $\left|p^{\prime}-q\right|=0$, which may happen only when $q \in A$, we have $\left|f\left(p^{\prime}\right)-g(q)\right|=|f(q)-g(q)|=0<\varepsilon / 2$.

Define $\delta:=\delta_{1} / 2$. Now for any $p \in \bar{A}$ such that $|p-q|<\delta$, we can find $\delta_{2}>0$ such that $\left|f\left(p^{\prime}\right)-g(p)\right|<\varepsilon / 2$ whenever $0<\left|p^{\prime}-p\right|<\delta_{2}$ and $p^{\prime} \in A$. Such δ_{2} exists, because $g(p)=\lim _{p^{\prime} \rightarrow p} f\left(p^{\prime}\right)$. Note also that if $\left|p^{\prime}-p\right|=0$, which may happen only when $p \in A$, we have $\left|f\left(p^{\prime}\right)-g(p)\right|=|f(p)-g(p)|=0<\varepsilon / 2$.

Take any point $p^{\prime} \in A$ such that $\left|p^{\prime}-p\right|<\min \left(\delta, \delta_{2}\right)$. Such p^{\prime} exists, because if $p \in A$, we can take $p^{\prime}=p$. Otherwise, p is a limit point of A and there are points of A arbitrarily close to p. Then $\left|p^{\prime}-q\right| \leq\left|p^{\prime}-p\right|+|p-q|<\delta+\delta=\delta_{1}$, and we have

$$
|g(p)-g(q)| \leq\left|g(p)-f\left(p^{\prime}\right)\right|+\left|f\left(p^{\prime}\right)-g(q)\right|<\varepsilon / 2+\varepsilon / 2=\varepsilon
$$

Thus, $g(q)$ is continuous on \bar{A}.
Now, let us show the uniqueness of g. Indeed, if we have another continuous function g_{1} on \bar{A} extending f from A, then we have $g_{1}(p)=$ $f(p)=g(p)$ for all $p \in A$. If $q \in A^{\prime}$, then take a sequence $\left\{p_{n}\right\} \subset A$ such that $p_{n} \rightarrow q$. Then, since g and g_{1} are continuous on \bar{A}, we have $\lim _{n \rightarrow \infty} g_{1}\left(p_{n}\right)=g_{1}(q)$ and $\lim _{n \rightarrow \infty} g\left(p_{n}\right)=g(q)$. However, since $p_{n} \in A$, we have $g_{1}\left(p_{n}\right)=f\left(p_{n}\right)=g\left(p_{n}\right)$ and thereby $g_{1}(q)=g(q)$.

Date: November 14, 2014.

