Math 5616H
Posted: 1/23; Updated: 1/24; Due: Friday, 1/30/2015
The problem set is due at the beginning of the class on Friday.
Reading: Chapter 6: Everything through 6.6, then 6.8, 6.12(a)-(d), 6.13(b), and 6.20-22.

Problem 1. Prove Theorem 6.12(b) for Riemann-integrable functions f_{1} and f_{2} on an interval $[a, b]$. Assume $\alpha(x)=x$.
Problem 2. Suppose that f is a continuous, real-valued function on an interval $[a, b]$. Prove that there exists $x \in[a, b]$ such that $\int_{a}^{b} f d x=$ $f(x)(b-a)$.

Problem 3. Let $f:[0,1] \rightarrow \mathbb{R}$ be defined by

$$
f(x)= \begin{cases}\sin (1 / x), & \text { if } x \neq 0 \\ 0, & \text { if } x=0\end{cases}
$$

Show that f is integrable on $[0,1]$. Hint: Try to use uniform continuity of $f(x)$ on an interval $[\varepsilon / 4,1]$ to find a partition P with $U(P, f)-$ $L(P, f)<\varepsilon$.
Problem 4. Suppose that f is continuous and nonnegative on the interval $[a, b]$ and $\int_{a}^{b} f d x=0$. Prove that $f \equiv 0$ on a $[a, b]$.
Problem 5. Let $f(1 / n)=1$ for $n \in \mathbb{N}$ and $f(x)=0$ otherwise. Prove that f is integrable on $[0,1]$.
Problem 6. Let $f:[0,1] \rightarrow \mathbb{R}$ be defined by

$$
f(x)= \begin{cases}1 / q, & \text { if } x=p / q>0 \text { (reduced rational fraction) } \\ 0, & \text { if } x=0 \text { or irrational }\end{cases}
$$

Show that f is integrable on $[0,1]$. FYI: This is an example of a function that is integrable on an interval but not differentiable at any point thereof.

Problem 7. Suppose that f is continuous, nonnegative, and monotonically increasing on $[0, \infty)$. Prove that

$$
\int_{0}^{x} f(t) d t \leq x f(x)
$$

for all $x \geq 0$.
Problem 8. Prove that

$$
\lim _{N \rightarrow \infty} \sum_{n=-N}^{N}\left(\frac{1}{N+i n}+\frac{1}{N-i n}\right)=2 \int_{-1}^{1} \frac{d t}{1+t^{2}}
$$

Hint: Represent the left-hand side as a Riemann sum, which we will study on Wednesday.

