Math 5616H

Homework 11

Posted: 4/18; Updated: 4/19; Due: Friday, 4/24/2015 The problem set is due at the beginning of the class on Friday.

Reading: Chapter 11: Review Sections 13-18, read Sections 19-25.

Conventions: For this homework, (X, \mathfrak{M}, μ) will be a measure space, unless stated otherwise. By definition, a *measurable set* is one from \mathfrak{M} and a *measurable function* on X is such $f : X \to [-\infty, \infty]$ that $f^{-1}(a, \infty]$ is a measurable set.

Problem 1. Let $(f_n)_{n \in \mathbb{N}}$ be a sequence of measurable functions on a measure space (X, \mathfrak{M}, μ) . Prove that the set $\{x \in X \mid \lim_n f_n(x) \text{ exists in } [-\infty, \infty]\}$ is a measurable set, *i.e.*, belongs to the σ -algebra \mathfrak{M} .

Problem 2. Prove that the characteristic function $\chi_{[0,1]}$ is not equal almost everywhere to a continuous function on \mathbb{R} .

Problem 3. Let $f : \mathbb{R} \to \mathbb{R}$. Prove that if f is differentiable on \mathbb{R} , then f' is Borel measurable, meaning the preimage of $(a, \infty]$ is a Borel set. *Hint*: Observe that f' is a pointwise limit of functions

$$f_n(x) = \frac{f(x+1/n) - f(x)}{1/n}.$$

Problem 4. Prove that if $f: X \to [0, \infty]$ is a nonnegative measurable function and $A \subset B$ are measurable sets, then $\int_A f d\mu \leq \int_B f d\mu$.

Problem 5. Prove that if $\int_E f d\mu = 0$ for some $f \ge 0$ and $E \in \mathfrak{M}$, then f = 0 almost everywhere. *Hint*: Let $A_n := \{x \in E \mid f(x) > 1/n\}$. Show that $\mu(A_n) = 0$, given the assumption. Deduce that $\mu(\bigcup_n A_n) = 0$.

Problem 6. Define $f : [0,1] \to \mathbb{R}$ by f(x) := 0 if x is rational, and $f(x) := d^2$ if x is irrational, where d is the first nonzero digit in the decimal expansion of x. Show that $\int_{[0,1]} f dm = 95/3$. *Hint*: Is not f simple?

Problem 7. Show that if $f: X \to [0, \infty]$ is measurable and bounded and $\int_X f d\mu < \infty$, then $\int_X f^2 d\mu < \infty$.