Posted: 4/18; Updated: 4/19; Due: Friday, 4/24/2015
The problem set is due at the beginning of the class on Friday.
Reading: Chapter 11: Review Sections 13-18, read Sections 19-25.
Conventions: For this homework, (X, \mathfrak{M}, μ) will be a measure space, unless stated otherwise. By definition, a measurable set is one from \mathfrak{M} and a measurable function on X is such $f: X \rightarrow[-\infty, \infty]$ that $f^{-1}(a, \infty]$ is a measurable set.
Problem 1. Let $\left(f_{n}\right)_{n \in \mathbb{N}}$ be a sequence of measurable functions on a measure space (X, \mathfrak{M}, μ). Prove that the set $\left\{x \in X \mid \lim _{n} f_{n}(x)\right.$ exists in $[-\infty, \infty]\}$ is a measurable set, i.e., belongs to the σ-algebra \mathfrak{M}.

Problem 2. Prove that the characteristic function $\chi_{[0,1]}$ is not equal almost everywhere to a continuous function on \mathbb{R}.

Problem 3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$. Prove that if f is differentiable on \mathbb{R}, then f^{\prime} is Borel measurable, meaning the preimage of $(a, \infty]$ is a Borel set. Hint: Observe that f^{\prime} is a pointwise limit of functions

$$
f_{n}(x)=\frac{f(x+1 / n)-f(x)}{1 / n} .
$$

Problem 4. Prove that if $f: X \rightarrow[0, \infty]$ is a nonnegative measurable function and $A \subset B$ are measurable sets, then $\int_{A} f d \mu \leq \int_{B} f d \mu$.
Problem 5. Prove that if $\int_{E} f d \mu=0$ for some $f \geq 0$ and $E \in \mathfrak{M}$, then $f=0$ almost everywhere. Hint: Let $A_{n}:=\{x \in E \mid f(x)>1 / n\}$. Show that $\mu\left(A_{n}\right)=0$, given the assumption. Deduce that $\mu\left(\bigcup_{n} A_{n}\right)=$ 0 .

Problem 6. Define $f:[0,1] \rightarrow \mathbb{R}$ by $f(x):=0$ if x is rational, and $f(x):=d^{2}$ if x is irrational, where d is the first nonzero digit in the decimal expansion of x. Show that $\int_{[0,1]} f d m=95 / 3$. Hint: Is not f simple?

Problem 7. Show that if $f: X \rightarrow[0, \infty]$ is measurable and bounded and $\int_{X} f d \mu<\infty$, then $\int_{X} f^{2} d \mu<\infty$.

