Homework 3

Math 5616H

Posted: 2/7; Due: Friday, 2/13/2015

The problem set is due at the beginning of the class on Friday.

Reading: 7.16-17 and 7.26-33.

Problem 1. Suppose $f : [a, b] \to \mathbb{R}$ is continuous and

$$\int_{a}^{b} x^{n} f(x) dx = 0$$

for all integers $n \ge 0$. These integrals are called the *moments of f*. The conclusion addresses the question of uniqueness in a moment problem.

- (1) Evaluate $\int_{a}^{b} P(x)f(x)dx$ for any polynomial P(x).
- (2) Prove that $\int_a^b (f(x))^2 dx = 0.$ (3) Show that f(x) = 0 for all $x \in [a, b].$

Problem 2. Which of the following sequences $\{f_n\}$ of functions converges uniformly on [0, 1]?

(1) $f_n(x) = nx^2(1-x)^n;$

(2)
$$f_n(x) = n^2 x (1 - x^2)^n;$$

(3) $f_n(x) = n^2 x^3 e^{-nx^2};$

(3)
$$f_n(x) = n^2 x^3 e^{-nx^2}$$

(4)
$$f_n(x) = \frac{x^2}{x^2 + (1 - nx)^2}$$

Problem 3. Let $A = \{ f \in \mathcal{C}([0, 1], \mathbb{R}) \mid |f(x)| \le 1 \text{ for all } x \in [0, 1] \}.$

- (1) Show that A is a closed, bounded subset in $\mathcal{C}([0,1],\mathbb{R})$.
- (2) Show that the sequence $f_n(x) = x^n$ in A does not have a convergent subsequence.
- (3) Explain why the fact that A is closed and bounded (Part (1)) does not contradict the fact that it is not compact, which follows from Part (2).

Problem 4. Let A be the same as in the preceding problem. Let $U_n := \{ f \in \mathcal{C}([0,1],\mathbb{R}) \mid |f(0) - f(1/n)| < 1 \}$ for $n \in \mathbb{N}$. Show that $\{U_n\}$ is an open cover of A but does not admit a finite subcover. (This is another blow to the Heine-Borel principle!)

Problem 5. A metric space is called *separable* if it has a countable dense subset. For instance, \mathbb{R} is separable, because \mathbb{Q} is countable and dense.

- (1) Prove that the metric space \mathbb{C} of complex numbers is separable.
- (2) Prove that $\mathcal{C}([0,1],\mathbb{R})$ is separable.

Problem 6. Consider the set of polynomials P(x) that have only terms of even degree, such as $x^6 - 3x^2 + 7$, but not x + 2 or $2x^4 - x^3 + 4$.

- (1) Prove that these polynomials are dense in $\mathcal{C}([0,1],\mathbb{R})$.
- (2) Is this true for $\mathcal{C}([-1,1],\mathbb{R})$?