Math 5616H
Posted: 2/7; Due: Friday, 2/13/2015
The problem set is due at the beginning of the class on Friday.
Reading: 7.16-17 and 7.26-33.
Problem 1. Suppose $f:[a, b] \rightarrow \mathbb{R}$ is continuous and

$$
\int_{a}^{b} x^{n} f(x) d x=0
$$

for all integers $n \geq 0$. These integrals are called the moments of f. The conclusion addresses the question of uniqueness in a moment problem.
(1) Evaluate $\int_{a}^{b} P(x) f(x) d x$ for any polynomial $P(x)$.
(2) Prove that $\int_{a}^{b}(f(x))^{2} d x=0$.
(3) Show that $f(x)=0$ for all $x \in[a, b]$.

Problem 2. Which of the following sequences $\left\{f_{n}\right\}$ of functions converges uniformly on $[0,1]$?
(1) $f_{n}(x)=n x^{2}(1-x)^{n}$;
(2) $f_{n}(x)=n^{2} x\left(1-x^{2}\right)^{n}$;
(3) $f_{n}(x)=n^{2} x^{3} e^{-n x^{2}}$;
(4) $f_{n}(x)=\frac{x^{2}}{x^{2}+(1-n x)^{2}}$.

Problem 3. Let $A=\{f \in \mathcal{C}([0,1], \mathbb{R})| | f(x) \mid \leq 1$ for all $x \in[0,1]\}$.
(1) Show that A is a closed, bounded subset in $\mathcal{C}([0,1], \mathbb{R})$.
(2) Show that the sequence $f_{n}(x)=x^{n}$ in A does not have a convergent subsequence.
(3) Explain why the fact that A is closed and bounded (Part (1)) does not contradict the fact that it is not compact, which follows from Part (2).

Problem 4. Let A be the same as in the preceding problem. Let $U_{n}:=\{f \in \mathcal{C}([0,1], \mathbb{R})| | f(0)-f(1 / n) \mid<1\}$ for $n \in \mathbb{N}$. Show that $\left\{U_{n}\right\}$ is an open cover of A but does not admit a finite subcover. (This is another blow to the Heine-Borel principle!)

Problem 5. A metric space is called separable if it has a countable dense subset. For instance, \mathbb{R} is separable, because \mathbb{Q} is countable and dense.
(1) Prove that the metric space \mathbb{C} of complex numbers is separable.
(2) Prove that $\mathcal{C}([0,1], \mathbb{R})$ is separable.

Problem 6. Consider the set of polynomials $P(x)$ that have only terms of even degree, such as $x^{6}-3 x^{2}+7$, but not $x+2$ or $2 x^{4}-x^{3}+4$.
(1) Prove that these polynomials are dense in $\mathcal{C}([0,1], \mathbb{R})$.
(2) Is this true for $\mathcal{C}([-1,1], \mathbb{R})$?

