Posted: 2/21; Updated: 2/22; Due: Friday, 2/27/2015
The problem set is due at the beginning of the class on Friday.
Reading: 7.10, Chapter 8: pp. 172-174, 178-181, 182-185.
Problem 1. Using differentiation, determine the coefficients $a_{n}, n \geq 0$, of the power series whose sum is $(1-z)^{-2}$ for $|z|<1$.

Problem 2. Prove that, for any integer $k \geq 0$,

$$
\sum_{n=0}^{\infty}\binom{n+k}{k} z^{n}=\frac{1}{(1-z)^{k+1}}, \quad|z|<1
$$

Problem 3. Suppose that $f(z)=\sum_{n=1}^{\infty} a_{n} z^{n}$ has a radius of convergence $R>0$, and suppose that $\left|z_{0}\right|=r<R$. Define

$$
g(z)=\sum_{n=1}^{\infty} a_{n}\left(z-z_{0}\right)^{n}, \quad\left|z-z_{0}\right|<R-r .
$$

Prove that $g(z)$ is given by a convergent power series

$$
g(z)=\sum_{n=0}^{\infty} b_{n} z^{n}
$$

whose radius of convergence is at least $R-r$. Hint: Use the Binomial theorem to compute the coefficients b_{n} and then use the previous problem to estimate the limsup formula for the radius of convergence of g using the radius of convergence R of f.

Problem 4. Determine the coefficients of the power series that defines a function with the following properties: $f^{\prime \prime}(z)=-f(z), f(0)=1$, $f^{\prime}(0)=0$.
Problem 5. Show that $e^{z_{1}}=e^{z_{2}}$, where $e^{z}:=E(z)$, if and only if $z_{1}-z_{2}=2 \pi n i$ for some $n \in \mathbb{Z}$.

Problem 6. Extend $C(x)$ and $S(x)$ from (46) in the textbook to complex z :

$$
\cos z=\frac{1}{2}\left(e^{i z}+e^{-i z}\right), \quad \sin z=\frac{1}{2 i}\left(e^{i z}-e^{-i z}\right)
$$

Is it true that for each $w \in \mathbb{C}$ there is $z \in \mathbb{C}$ such that $\cos z=w$? Find all solutions when there are any.

Problem 7. Find ten other proofs of the Fundamental Theorem of Algebra. (No need to hand in)

