Problem 1. Using differentiation, determine the coefficients \(a_n, n \geq 0, \) of the power series whose sum is \((1 - z)^{-2} \) for \(|z| < 1. \)

Problem 2. Prove that, for any integer \(k \geq 0, \)
\[
\sum_{n=0}^{\infty} \binom{n+k}{k} z^n = \frac{1}{(1-z)^{k+1}}, \quad |z| < 1.
\]

Problem 3. Suppose that \(f(z) = \sum_{n=1}^{\infty} a_n z^n \) has a radius of convergence \(R > 0, \) and suppose that \(|z_0| = r < R. \) Define
\[
g(z) = \sum_{n=1}^{\infty} a_n (z - z_0)^n, \quad |z - z_0| < R - r.
\]
Prove that \(g(z) \) is given by a convergent power series
\[
g(z) = \sum_{n=0}^{\infty} b_n z^n
\]
whose radius of convergence is at least \(R - r. \) *Hint:* Use the Binomial theorem to compute the coefficients \(b_n \) and then use the previous problem to estimate the lim sup formula for the radius of convergence of \(g \) using the radius of convergence \(R \) of \(f. \)

Problem 4. Determine the coefficients of the power series that defines a function with the following properties: \(f''(z) = -f(z), \) \(f(0) = 1, \) \(f'(0) = 0. \)

Problem 5. Show that \(e^{z_1} = e^{z_2}, \) where \(e^z := E(z), \) if and only if \(z_1 - z_2 = 2\pi ni \) for some \(n \in \mathbb{Z}. \)

Problem 6. Extend \(C(x) \) and \(S(x) \) from (46) in the textbook to complex \(z: \)
\[
\cos z = \frac{1}{2}(e^{iz} + e^{-iz}), \quad \sin z = \frac{1}{2i}(e^{iz} - e^{-iz}).
\]
Is it true that for each \(w \in \mathbb{C} \) there is \(z \in \mathbb{C} \) such that \(\cos z = w? \) Find all solutions when there are any.

Problem 7. Find ten other proofs of the Fundamental Theorem of Algebra. (No need to hand in)