Math 5616H
Posted: 3/8; Updated: 3/20; Due: Monday, 3/23/2015
The problem set is due at the beginning of the class on Monday.
Reading: 9.15-18, 20-21, 39, 41.
Problem 1. Let $U \subset \mathbb{R}^{n}$ be an open set. Show that if $f_{k}: U \rightarrow \mathbb{R}$, $k=1, \ldots, m$ are differentiable, then $f=\left(f_{1}, \ldots, f_{m}\right)$ is differentiable on U and $D f=\left(D f_{1}, \ldots, D f_{m}\right)$.

Problem 2. Show that the maximum value of the directional derivative of $f: U \rightarrow \mathbb{R}, U \subset \mathbb{R}^{n}$ open, at a point x is the direction of the gradient $\nabla f(x)$ and the value of this derivative is $\|\nabla f(x)\|$. Hint: You can use the relation between the dot product of two vectors, their norms, and the angle between them.

Problem 3. Let

$$
f(x, y)= \begin{cases}0 & \text { when }(x, y)=(0,0) \\ \frac{x y}{x^{2}+y^{2}} & \text { otherwise }\end{cases}
$$

Show that $D_{1} f(0,0)=D_{2} f(0,0)=0$, but nonetheless f is not continuous at the origin, and hence not differentiable there.

Problem 4. Let

$$
f(x, y)= \begin{cases}0 & \text { when }(x, y)=(0,0) \\ \frac{x^{3}}{x^{2}+y^{2}} & \text { otherwise }\end{cases}
$$

Show that f has a directional derivative in every direction at the origin, but f is not differentiable at the origin. Hint: Show that the formula $D_{v} f(x)=\nabla f(x) \cdot v$ for $\|v\|=1$ (Eqn. (40) in Chapter 9) fails.

Problem 5. Let

$$
f(x, y)=\sqrt{|x|+|y|} .
$$

Find those points in \mathbb{R}^{2} at which f is differentiable. Hint: If near a point (x, y), say, in the second quadrant, the function is equal to $\sqrt{-x+y}$, then it will be the composition of two differentiable functions, thereby, differentiable by the "Chain Rule."

Problem 6. Let $f: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ be defined by

$$
f(x, y)=x \cdot y
$$

Show that f is differentiable on $\mathbb{R}^{n} \times \mathbb{R}^{n}$ and that $\operatorname{Df}(a, b)(x, y)=$ $b \cdot x+a \cdot y$.

Problem 7 (Cauchy-Riemann Equations). Let $U \subset \mathbb{C}$ be an open set. A function $f: U \rightarrow \mathbb{C}$ is called complex differentiable at $z_{0} \in U$ if

$$
\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}
$$

exists. A function f is called analytic on U if f is complex differentiable at each point of U. Let $f(z)=u(x, y)+i v(x, y)$, where u and v are functions $U \rightarrow \mathbb{R}$ and z is written in the form $z=x+i y$ with $x, y \in \mathbb{R}$. Show that if f is analytic on U, then

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \text { and } \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
$$

at all points of U.
Problem 8 (Mean Value Theorem). Let $U \subset \mathbb{R}^{n}$ be an open set and $f: U \rightarrow \mathbb{R}$ be differentiable on U. Let x, y be two distinct points in U such that the line segment joining them lies entirely in U. Show that there exists $\xi \in(0,1)$ such that

$$
f(y)-f(x)=D f(z)(y-x),
$$

where $z=(1-\xi) x+\xi y$.
Problem 9. Deduce from the previous problem that if $D f(x)=0$ for all $x \in U$, then f is constant on U, provided U is connected. Hint: This problem does not obviously follow from the previous one, because a connected set is not necessarily convex. To use connectedness, pick a point $x \in U$ and show that the set of points $y \in U$ at which $f(y)=f(x)$ is open.

Problem 10. Let

$$
f(x, y)= \begin{cases}0 & \text { when }(x, y)=(0,0), \\ \frac{x^{3} y-x y^{3}}{x^{2}+y^{2}} & \text { otherwise. }\end{cases}
$$

Show that f is differentiable everywhere. Show that $D_{12} f(0,0)$ and $D_{21} f(0,0)$ exist, but $D_{12} f(0,0) \neq D_{21} f(0,0)$.

