Posted: 3/23; Updated: 3/24; Due: Friday, 3/27/2015
The problem set is due at the beginning of the class on Friday.
Reading: Chapter 9: pp. 221-228.
Problem 1. Let $U \subset \mathbb{R}^{n}$ be an open set and $f: U \rightarrow \mathbb{R}$. The function f is said to be in $C^{k}(U)$, if f has all continuous partial derivatives up to and including order k on U. Let $l \leq k$ and $i_{1}, i_{2}, \ldots, i_{l}$ be a collection of integers between 1 and l. Under these conditions, show that for any permutation $\sigma \in S_{l}$, we have

$$
D_{i_{1}, \ldots, i_{l}} f=D_{\sigma\left(i_{1}\right), \ldots, \sigma\left(i_{l}\right)} f .
$$

Problem 2. Let

$$
f(x, y)= \begin{cases}0 & \text { when }(x, y)=(0,0) \\ \left(x^{2}+y^{2}\right) \sin \left(\frac{1}{\sqrt{x^{2}+y^{2}}}\right) & \text { otherwise }\end{cases}
$$

Show that $D_{1} f$ and $D_{2} f$ exist everywhere but are not continuous at the origin.

Problem 3. Let $f: \mathbb{R}^{3} \backslash\{(0,0,0)\} \rightarrow \mathbb{R}^{3} \backslash\{(0,0,0)\}$ be given by

$$
f(x, y, z)=\left(\frac{x}{x^{2}+y^{2}+z^{2}}, \frac{y}{x^{2}+y^{2}+z^{2}}, \frac{z}{x^{2}+y^{2}+z^{2}}\right) .
$$

Show that f is locally invertible at every point in $\mathbb{R}^{3} \backslash\{(0,0,0)\}$. Find an explicit formula for f^{-1}.

Problem 4. Consider the equations

$$
a b^{2}+c d e+a^{2} d=3 \quad \text { and } \quad a c e^{3}+2 b d-b^{2} e^{2}=2
$$

Determine for which pairs of variables the Implict Function Theorem implies that the two equations can be uniquely solved for in terms of the other three near the point $(a, b, c, d, e)=(1,1,1,1,1)$.

Problem 5. Define a map from \mathbb{R}^{2} to itself by setting

$$
F(x, y)=(\sin x \cos y+\cos x \sin y, \cos x \cos y-\sin x \sin y)
$$

Does there exist a point $\left(x_{0}, y_{0}\right)$ such that F is locally invertible in a neighborhood of $F\left(x_{0}, y_{0}\right)$?

