Math 5616H

Homework 8

Posted: 3/29; Updated: 4/1; Due: Friday, 4/3/2015 The problem set is due at the beginning of the class on Friday. **Reading:** Chapter 11: Sections 1-8, 12.

Problem 1. Show that if we add one more property to the definition of a σ -ring \mathfrak{M} on a set X in 11.1 of the text: \mathfrak{M} contains the ambient set X, we will get a notion equivalent to the notion of a σ -algebra from class (a collection of subsets containing the empty set \varnothing and closed under countable unions and complements).

Problem 2. Is the Cantor set a Borel set on \mathbb{R} ?

Problem 3. Let X be a separable metric space and let \mathfrak{M} be the σ -algebra generated by open balls in X. Show that \mathfrak{M} contains all the open sets in X and all the closed sets. Describe some sets in an example \mathfrak{M} that are neither open nor closed. The σ -algebra \mathfrak{M} is called the σ -algebra of *Borel sets* in X. *Hint*: Show that every open set in X is a countable union of open balls.

Problem 4. Can a σ -algebra in a set X have cardinality \aleph_0 ? *Hint*: Show that if a σ -algebra is infinite, then it contains a countable collection of pairwise disjoint subsets. Deduce that the σ -algebra will also contain arbitrary unions of these dijoint subsets.

Problem 5. Show that if μ is a measure on a set X with a σ -algebra \mathfrak{M} and there is a set $A \in \mathfrak{M}$ such that $0 < \mu(A) < \infty$, then $\mu(\emptyset) = 0$.

Problem 6. Show that the σ -algebra generated by the collection of open rectangles (called *intervals* in the text) is the same as the σ -algebra generated by the collection of half-open rectangles.

Problem 7. Show that the Lebesgue outer measure of a face $I_1 \times \cdots \times I_{i-1} \times \{a\} \times I_{i+1} \times \cdots \times I_n$ of a rectangle $I_1 \times \cdots \times I_n \subset \mathbb{R}^n$ is zero. Here I_1, \ldots, I_n are open intervals in \mathbb{R} and a is one of the endpoints of I_i .

Problem 8. Show that the restriction $\mu^*|_E$ of an outer measure μ^* on a set X to a subset $E \subset X$ defined by $\mu^*|_E(A) := \mu^*(E \cap A)$ for any $A \subset X$ is an outer measure on X. Show that any set that is measurable with respect to μ^* is measurable with respect to $\mu^*|_E$ (regardless of whether E is measurable).