Math 5616H

Homework 9

Posted: 4/6; Updated: 4/6; Due: Friday, 4/10/2015 The problem set is due at the beginning of the class on Friday. **Reading**: Chapter 11: Sections 8, 10-11.

Problem 1. Prove that any compact set K in \mathbb{R}^n is Lebesgue measurable and $m(K) < \infty$.

Problem 2. Show that the Cantor set is measurable and has (Lebesgue) measure zero.

Problem 3. Let $c : [0,1] \to \mathbb{R}$ be the Cantor function constructed in Homework 2. Extend c to all \mathbb{R} by setting c(x) := 0 for $x \leq 0$ and c(x) := 1 for $x \geq 1$. Let f(x) := c(x) + x. Show that f carries a set of (Lebesgue) measure zero (the Cantor set) to a set of positive measure. (This provides a counterexample, as one can show that f is a homeomorphism of \mathbb{R} , *i.e.*, a continuous map $\mathbb{R} \to \mathbb{R}$ which has a continuous inverse. You do not have to show that, though.)

Problem 4. A measure μ on a metric space with a given σ -algebra \mathfrak{M} is called *regular*, if the σ -algebra of Borel sets is a subalgebra of \mathfrak{M} , and for every set A in \mathfrak{M} , we have

$$\mu(A) = \inf\{\mu(U) \mid U \text{ is open and } A \subset U\}$$

and

 $\mu(A) = \sup\{\mu(K) \mid K \text{ is compact and } K \subset A\}.$

(1) Show that the counting measure on \mathbb{Z} with the induced metric from \mathbb{R} is regular. (2) Show that the delta measure with respect to a point x_0 on any metric space is regular.

Problem 5. Show that the Lebesgue measure on \mathbb{R}^n is regular.