
MATH 5616H INTRODUCTION TO ANALYSIS II
SAMPLE FINAL EXAM: SOLUTIONS

You may not use notes, books, etc. Only the exam paper, a pencil
or pen may be kept on your desk during the test. Calculators are not
allowed, either, but will not be needed. Ask me, and I will compute
anything for you, if you need me to. Unless stated otherwise, please
show all of your work and justify your answers in order to receive full
credit.

Good luck!

Problem 1. Let f : R → R be continuous and periodic with period
p > 0, that is, f(x + p) = f(x) for all x and p is the least positive
number with this property. Prove that∫ p

0

f(x+ y)dx =

∫ p

0

f(x)dx for any y ∈ R.

Solution. For any real number y and any integrable function g : [a +
y, b+ y]→ R ∫ b

a

g(x+ y)dx =

∫ b+y

a+y

g(x)dx.

Of course we know this for continuous functions from Calculus, us-
ing a change of variables, but a quick comparison identifies the lower
Riemann sums:

L(g(x+ y), a = x0 ≤ x1 ≤ · · · ≤ xn = b)

=
∑
i

( inf
x∈[xi−1,xi]

g(x+ y))(xi − xi−1)

=
∑
i

( inf
x∈[xi−1+y,xi+y]

g(x))(xi + y − (xi−1 + y))

= L(g(x), a+ y = x0 + y ≤ · · · ≤ xn + y = b+ y).

Thus, the integrals, being the suprema of lower Riemann sums, must
be equal.

Using this statement, we get∫ p

0

f(x+ y)dx =

∫ p+y

y

f(x)dx =

∫ np

y

f(x)dx+

∫ p+y

np

f(x)dx,
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where np is such that y ≤ np ≤ p+y. Since f(x) takes the same values

on [np, p + y] and [(n− 1)p, y], we have
∫ p+y

np
f(x)dx =

∫ y

(n−1)p f(x)dx.

Thus
∫ p

0
f(x+ y)dx =

∫ np

(n−1)p f(x)dx =
∫ p

0
f(x)dx. �

Problem 2. (1) Find real numbers a and b such that the partial
differential equation (PDE) (you do not need to know what it
is, just the equation below)

ut(t, x) = (k − 1)ux(t, x) + uxx(t, x)− ku(t, x), k ∈ R,
turns into wt(t, x) = wxx(t, x) after the substitution

u(t, x) = eax+btw(t, x).

(2) Find an equation relating the derivatives (a.k.a. differentials)
Du(t, x) andDw(t, x). If there are derivatives of other functions
involved, compute them.

Solution. (1) Using the product rule for partials, which may be thought
of as derivatives of functions R to R, we obtain

ut = eax+bt(bw + wt),

ux = eax+bt(aw + wx),

uxx = eax+bt(a2w + 2awx + wxx).

Plug these in the PDE for u, and you will see that it is equivalent to
the PDE for w iff the coefficients by w cancel: b = (k−1)a+a2−k. and
the coefficients by wx cancel: (k − 1) + 2a = 0, whence a = (1 − k)/2
and b = (1 + k)2/4.

(2) By the product rule for functions R2 → R, we have Du =
wD(eax+bt) + eax+btDw = eax+bt(w · (b, a) +Dw). �

Problem 3. Let {fi | i ∈ I} be a uniformly bounded set of Riemann
integrable functions on [a, b] ⊂ R. Define

Fi(x) :=

∫ x

a

fi(t)dt, a ≤ x ≤ b.

Show that the family {Fi} contains a uniformly convergent subse-
quence.

Solution. Uniform boundedness for fi’s means: there exists M such
that |fi(x)| ≤M for all i and x. Therefore,

|Fi(x)− Fi(y)| =
∣∣∣∣∫ y

x

fi(t)dt

∣∣∣∣ ≤M |x− y|,

which implies that the family {Fi} is equicontinuous. It is also uni-
formly bounded, because |Fi(x)| = |Fi(x) − Fi(a)| ≤ M(x − a) ≤
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M(b− a) for all x ∈ [a, b]. By the Arzelà-Ascoli theorem (every point-
wise bounded, equicontinuous family of real-valued functions on a com-
pact has a uniformly convergent subsequence), we get the result. �

Problem 4. Suppose f ∈ L1([0, 1]), i.e., f : [0, 1] → [0,∞] is an
integrable function. Prove that limε→0+

∫
[0,ε]

fdm = 0.

Solution. By the sequential characterization of limits of functions, it
suffices to show that for any monotone decreasing sequence {an} such
that an → 0+, we have limn→∞

∫
[0,an]

fdm = 0. Recall that E 7→
ν(E) =

∫
E
fdm defines a measure on [0, 1]. For En = [0, an], we have

ν(En) =
∫
En
fdm <∞, because f ∈ L1, and En ⊃ En+1. By continuity

of a measure from below, we get limn→∞
∫
En
fdm = limn→∞ ν(En) =

ν (
⋂

nEn) = ν({0}) =
∫
{0} fdm = f(0) ·m({0}) = f(0) · 0 = 0. �

Problem 5. Prove that if f is continuous on [0, 1], then

lim
n→∞

∫ 1

0

f(xn)dx = f(0).

Solution. ∫ 1

0

f(xn)dx =

∫ c

0

f(xn)dx+

∫ 1

c

f(xn)dx

for any c ∈ (0, 1).
Since xn → 0 uniformly on [0, c] (as for x ∈ [0, c] we have 0 ≤ xn ≤

cn → 0, which explains why we decided to split the integral in the first
place), we claim that f(xn)→ f(0) also uniformly on [0, c]. Indeed, for
each ε > 0 find δ > 0 such that |f(y)−f(0)| < ε for each y : 0 ≤ y < δ.
Then for this δ find an N ∈ N such that 0 ≤ xn < δ for all x ∈ [0, c] and
n > N . Then for such n we have |f(xn)− f(0)| < ε for all x ∈ [0, c].

Now, as c→ 1−, we will have
∫ c

0
f(xn)dx→

∫ c

0
f(0)dx = f(0) · c→

f(0) (passing to uniform limit inside Riemann integral). On the other

hand,
∣∣∣∫ 1

c
f(xn)dx

∣∣∣ ≤ M(1 − c) → 0 as c → 1−, where M is a bound

for our continuous f(y) on [0, 1]. �

Problem 6. Let X and Y be compact metric spaces and let f(x, y) ∈
C(X × Y ) be a continuous real-valued function on X × Y . Show that
for every ε > 0 there exist g1, . . . , gn ∈ C(X) and h1, . . . , hn ∈ C(Y )
such that∣∣∣∣∣f(x, y)−

n∑
i=1

gi(x)hi(y)

∣∣∣∣∣ < ε for all (x, y) ∈ X × Y.
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Solution. Consider

A := {functions on X × Y of the form
n∑

i=1

gi(x)hi(y),

as in the problem} ⊂ C(X × Y ).

This is an algebra: obviously closed under addition, multiplication:(
m∑
i=1

gi(x)hi(y)

)
·

(
n∑

j=1

sj(x)tj(y)

)
=

m∑
i=1

n∑
j=1

gi(x)sj(x)hi(y)tj(y),

and scalar multiplication by real numbers. It separates points. Indeed,
for any (x1, y1) 6= (x2, y2), we can assume WLOG that x1 6= x2. Then
we can take any continuous g(x) such that g(x1) 6= g(x2), such as the
distance function g(x) = d(x, x1), and the function g(x) · 1 ∈ A will
separate (x1, y1) and (x2, y2). The algebra has the function 1 = 1 · 1 in
it, so there is no point in X × Y at which all functions from A vanish.
Thus, by the Stone theorem, A is uniformly dense in C(X × Y ), which
rewrites exactly as the conclusion of the problem. �

Problem 7. Show that any measure is countably subadditive.

Solution. Let (X,M, µ) be our measure space. Given An ∈ M for
n ∈ N, define Cn = An \

⋃n−1
i=1 Ai. Then An does not intersect any

of the Ai’s with i < n and neither does Cn with any of the Ci’s with
i < n. Also,

⋃
nAn =

∐
nCn. By the countable additivity of µ, we have

µ (
⋃

nAn) = µ (
∐

nCn) =
∑

n µ(Cn) ≤
∑

n µ(An), the last inequality
being because Cn ⊂ An for all n. �

Problem 8. Define f : [0, 1]→ R by

f(x) =

{
0 if x is rational,
1√
d

if x is irrational and x = 0.0 . . . 0d . . . ,

where d is the first nonzero digit in the decimal expansion of x. Prove
that f is measurable.

Solution. Note that the function f is a simple function, i.e., a linear
combination of characteristic functions:

f =
9∑

d=1

1√
d
χAd

,

whereAd = {x ∈ [0, 1] |x 6∈ Q, d/10n < x < (d+1)/10n for some n ≥ 1}
for 1 ≤ d ≤ 8 and 9/10n < x < 1/10n−1 for d = 9. Each Ad is Borel as
an open set (a countable union of intervals) with Q removed, which is
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Borel, being a countable union of points, each of which is closed. Hence
each Ad is Lebesgue measurable, and so is our simple function f . �


