This is Part I of the problem set.

I encourage you to cooperate with each other on the homeworks.

Reminder: all rings are commutative with an identity element 1, all ring homomorphisms carry 1 to 1, and a subring shares the same identity element with the ring.

Problem 1. Let \(A \) be a UFD. A polynomial
\[
a_n X^n + a_{n-1} X^{n-1} + \cdots + a_0 \in A[X]
\]
is primitive if its coefficients \(a_i \) have no common factors in \(A \) (other than units).

Prove Gauss’ Lemma: the product of two primitive polynomials is primitive.

Problem 2 (This problem is not for credit. You may do it for fun).

Prove the cases \(n = 3 \) and \(n = 4 \) of Fermat’s Last Theorem. [Harder, a hint will be given later. So far: use the discussion of \(\mathbb{Z}[\sqrt{1}] \) in the first lecture].

Problem 3. Let \(\phi : A \to B \) be a ring homomorphism. Prove that \(\phi^{-1} \) takes prime ideals of \(B \) to prime ideals of \(A \). [In particular, if \(A \subset B \) and \(P \) is a prime ideal of \(B \), then \(A \cap P \) is a prime ideal of \(A \)].

Problem 4. Prove or give a counterexample:

1. the intersection of two prime ideals is prime;
2. the ideal \(P_1 + P_2 \) generated by two prime ideals \(P_1, P_2 \) is again prime;
3. if \(\phi : A \to B \) is a ring homomorphism, then \(\phi^{-1} \) takes maximal ideals of \(B \) to maximal ideals of \(A \);
4. the map \(\phi^{-1} \) for a quotient homomorphism \(\phi : A \to A/I \) takes maximal ideals of \(A/I \) to maximal ideals of \(A \).

Problem 5.

1. If \(a \) is a unit and \(x \) is nilpotent, prove that \(a + x \) is again a unit.
2. Let \(A \) be a ring, and \(I \subset \text{nilrad} A \) an ideal; if \(x \in A \) maps to an invertible element of \(A/I \), prove that \(x \) is invertible in \(A \).

Problem 6. Show that if \(A \) is a reduced ring and has finitely many minimal prime ideals \(P_i \), i.e., minimal elements in the set of prime ideals of \(A \), then \(A \hookrightarrow \bigoplus_{i=1}^n A/P_i \); moreover the image has nonzero intersection with each summand.

Problem 7. Describe Spec \(\mathbb{R}[X] \) in terms of \(\mathbb{C} \).

Problem 8. Let \(A \) be a ring with zerodivisors, i.e., not an integral domain. Prove that \(A \) has either nonzero nilpotent elements, or more than one minimal prime ideal.

Date: September 10, 2003.