MATH 8254: ALGEBRAIC GEOMETRY
PROBLEM SET 1, DUE FRIDAY, FEBRUARY 8, 2008

SASHA VORONOV

From Hartshorne’s textbook: II.1.22, II.2.14 (b) (finish what we have not
done in class, i.e., construct a morphism of schemes), II.5.7 (c), II.5.9 (c), II.5.14
(a,b,c) (skip the d-uple embedding, hint: see the second half of the proof of Theorem
5.19).

Problem 1. For a graded ring \(S = \bigoplus_{n=0}^{\infty} S_n \), show that the natural morphism
\(\text{Proj} S \to \text{Spec} R \), where \(R = S_0 \), is separated. [Hint: Show that for each homoge-
neous \(f, g \in S_+ \), there is a closed immersion \(D_+(fg) \to D_+(f) \times_{\text{Spec} R} D_+(g) \). This
is enough, because the fibered products of the basic open sets \(D_+ \) provide a base
of topology of \(X \times_{\text{Spec} R} X \).]

Problem 2. (1) Show that a sheaf of \(\mathcal{O}_X \)-modules over a scheme \(X \) is quasi-
coherent, if and only if it is locally \emph{presentable}, i.e., for each point \(x \) in \(X \),
there is an open neighborhood \(U \) of \(x \) and sets \(I \) and \(J \), so that there is an
exact sequence of \(\mathcal{O}_U \)-modules:
\[
\mathcal{O}_I \to \mathcal{O}_J \to \mathcal{F}|_U \to 0.
\]

(2) Show that a sheaf of \(\mathcal{O}_X \)-modules over a noetherian scheme \(X \) is coherent,
iff it is locally \emph{finitely presentable}, which is the same as above with the sets
\(I \) and \(J \) being finite.

Date: February 4, 2008.