MATH 8254: ALGEBRAIC GEOMETRY
PROBLEM SET 2, DUE MONDAY, MARCH 3, 2008

SASHA VORONOV

From Hartshorne’s textbook: II.5.11, II.7.8.

Problem 1. (1) Let $S = \bigoplus_{n=0}^{\infty} S_n$ be a graded ring and $R = S_0$. Suppose $\phi: R \to A$ is a ring homomorphism and let $T = S \otimes_R A$ be the graded ring induced by the base change. Prove that $\text{Proj } T \cong \text{Proj } S \times \text{Spec } R \times \text{Spec } A$.

(2) Let $S = \bigoplus_{n=0}^{\infty} S_n$ be a quasi-coherent graded \mathcal{O}_X-algebra over a scheme X. Let $f^*S = \bigoplus_{n=0}^{\infty} f^*S_n$ be the inverse image under a scheme morphism $f: Y \to X$. Prove that $\text{Proj } f^*S \cong \text{Proj } S \times_X Y$.

Problem 2. For a quasi-coherent sheaf \mathcal{E} and an invertible sheaf \mathcal{L} over a scheme X, prove that $\mathbb{P}(\mathcal{E})$ and $\mathbb{P}(\mathcal{E} \otimes \mathcal{L})$ are isomorphic schemes over X.

Problem 3. Let $f: Y \to X$ be a relative scheme. For an f-very ample sheaf \mathcal{L} on Y, prove that for each integer $n > 0$, the sheaf $\mathcal{L}^{\otimes n}$ is also f-very ample.

Date: February 24, 2008.