MATH 8254: ALGEBRAIC GEOMETRY
PROBLEM SET 4, DUE WEDNESDAY, APRIL 23, 2008

SASHA VORONOV

Problem 1. Using the same method as we used in class, prove directly, without
reduction to $m = 0$, that for any integer m, $H^p(X, \mathcal{O}_X(m)) = 0$ for $0 < p < n$,
where $X = \mathbb{P}^n_R$ is the projective space over a Noetherian ring R. [The method we
used in class was presenting an arbitrary Čech p-cocycle
\[
\left(\frac{f_{i_0 i_1 \ldots i_p}}{(x_{i_0} x_{i_1} \ldots x_{i_p})^r} \right), \quad i_0 < i_1 < \cdots < i_p, \quad f_{i_0 i_1 \ldots i_p} \in S(r(p+1)),
\]
in $C^p(U, \mathcal{O}_X)$ explicitly as a Čech coboundary. If you do not have notes to remind
you how it works, ask your classmates for notes or talk to me.]

Problem 2. For a closed immersion $f : X \to Y$, show that $R^p f_* \mathcal{F} = 0$ for $p > 0$,
where \mathcal{F} is a quasi-coherent sheaf on X. [Hint: For an affine open $U \subset Y$, note
that $H^p(f^{-1}(U), \mathcal{F}) = 0$ for $p > 0$.]

Problem 3. Let $\{U_i \mid i \in I\}$ and $\{V_j \mid j \in J\}$ be open coverings of a scheme
X. Find a necessary and sufficient condition for $\{(f_i, U_i)\}$, $f_i \in \Gamma(U_i, \mathcal{K}^*)$, and
$\{(g_j, V_j)\}$, $g_j \in \Gamma(V_j, \mathcal{K}^*)$, to determine the same element in $H^0(X, \mathcal{K}^*/\mathcal{O}^*)$. [Hint:
Give an answer in terms of a refinement of the two coverings.]

Problem 4. When a Cartier divisor $D = \{(f_i, U_i) \mid i \in I\}$ over an integral scheme X
can be chosen as $f_i \in \Gamma(U_i, \mathcal{O})$, D is said to be an effective Cartier divisor, and
we write $D \geq 0$. In Proposition III.6.11, show that there is a bijection between
effective Weil divisors and effective Cartier divisors.

Problem 5. For a separated Noetherian integral scheme X regular in codimension
one and a Weil divisor D on it, let
\[
L(D) := \{ f \in k(X) \mid f = 0 \text{ or } (f) + D \geq 0 \}.
\]
Show that $L(D)$ is an additive group and $L(D) \cong L(E)$ for $D \sim E$.

Date: April 14, 2008.