Posted: 1/23/2016; Updated 2/4/2016; Due: Friday, 2/5/2016
The problem set is due at the beginning of the class on Friday, February 5.
Reading: Class notes, consult with the Wikipedia articles on Maurer-Cartan forms and connections on principal G-bundles. Text: Review Sections 5.6, 5.8, and 6.1. Read Sections 6.2-3.

Problem 1. Calculate the Maurer-Cartan form on $G=S^{1}$.
Problem 2. For a Lie subgroup $H \subset G$, show that the restriction $\left.\omega_{G}\right|_{H}$ of the Maurer-Cartan form ω_{G} on G to H is the Maurer-Cartan form ω_{H} on H :

$$
\left.\omega_{G}\right|_{H}=\omega_{H}
$$

Problem 3. For the Maurer-Cartan form $\omega=\left(x_{i j}\right)^{-1}\left(d x_{i j}\right)$ on $\mathfrak{g l}(n, \mathbb{R})$, prove the Maurer-Cartan equation

$$
d \omega+\frac{1}{2}[\omega, \omega]=0
$$

by direct computation.
Problem 4. Consider the principal H-bundle $G \rightarrow G / H$ for a closed Lie subgroup H of a real Lie group G. Note that the Maurer-Cartan form does not readily produce a connection on that principal H-bundle, because ω is in $\Omega^{1}(G ; \mathfrak{g})$, whereas a connection on the principal H-bundle is supposed to be in $\Omega^{1}(G ; \mathfrak{h})$. Describe a construction which might allow you to construct a connection on this principal H bundle using the Maurer-Cartan form ω on G. Check that the \mathfrak{h}-valued form that you construct is indeed a connection on the principal H-bundle. Find a condition under which this connection is flat, i.e., has zero curvature.

Problem 5. Let G be a connected real Lie group with a Lie algebra whose Killing form is negative definite. Show that the adjoint representation is orthogonal, i.e., admits a G-invariant inner product. Note: Do not use the fact that G must be compact, which we actually have never proven and are not going to. This problem spells out a claim made in the proof of Theorem 6.10.

Problem 6. Let G be a connected real Lie group with a semisimple Lie algebra. Show that

$$
\operatorname{Ad} G=(\operatorname{Aut} \mathfrak{g})^{0}
$$

Note: This will complete the argument in Theorem 6.10 by implying that, provided that the Killing form is negative definite, $\operatorname{Ad} G$ is a closed subgroup in $\operatorname{SO}(\mathfrak{g})$ and thereby compact.

Problem 7. Problem 6.1 from the textbook (Section 6.8). Note: There is a sign error in the problem: under the conventions of the textbook, the Casimir C must be $-\left(J_{x}^{2}+J_{y}^{2}+J_{z}^{2}\right) / 2$. Also, instead of comparing the conclusion to the proof of Lemma 4.62, compare it to the direct verification, as in Example 5.6, of the fact that $J_{x}^{2}+J_{y}^{2}+J_{z}^{2}$ is central, which we did in class last term. "Compare" means nothing for your actual homework: it is just a motivational remark for you. All you need to do is to show that $-\left(J_{x}^{2}+J_{y}^{2}+J_{z}^{2}\right) / 2$ is the Casimir.
Problem 8. Why does the trivial extension $0 \rightarrow V_{2} \rightarrow V_{1} \oplus V_{2} \rightarrow V_{1} \rightarrow 0$ represent the zero element in the Abelian group $\operatorname{Ext}_{\mathfrak{g}}^{1}\left(V_{1}, V_{2}\right)$ of extensions $0 \rightarrow V_{2} \rightarrow W \rightarrow$ $V_{1} \rightarrow 0$ of representations of a Lie algebra \mathfrak{g} ? The group law on Ext ${ }_{\mathfrak{g}}^{1}$ is given by the Baer sum.

