Math 8272 Homework 5 Posted: 4/6/2016; Updated: 4/11; Due: Friday, 4/15

The problem set is due at the beginning of the class on Friday, April 15, 2016.

Reading: Text: Sections 7.9, 8.1–2.

Problem from Chapter 7 (Section 7.11): 13.

Problem from Chapter 8 (Section 8.10): 1, 3 [*Hint*: Solve Problem 1 below first], 9.

Problem 1. Let P be the weight lattice of a polarized, reduced root system R in a Euclidean space E with a set $\{\alpha_1, \ldots, \alpha_r\}$ of simple roots. Let $\omega_i \in E$ be the *fundamental weights*, defined by

$$\omega_i(\alpha_j^{\vee}) = \delta_{ij}, \qquad i, j = 1, \dots, r,$$

where the (simple) coroots $\alpha_i^{\vee} \in E^*$ are defined by

$$\lambda(\alpha_i^{\vee}) = \frac{2(\alpha_i, \lambda)}{(\alpha_i, \alpha_i)} \quad \text{for all } \lambda \in E.$$

Show that the weight lattice P is the free Abelian group on the fundamental weights.

Problem 2. (1) Take the B_n root system R in the Euclidean space \mathbb{R}^n with a standard basis $\{e_1, \ldots, e_n\}$, see page 205 (Appendix A.2). Show that its Dynkin diagram is indeed what it is supposed to be. (2) Do the same for the D_n root system from page 208, Appendix A.4. (Note that there is a misprint in the Dynkin diagram on page 208, see the *Errata* or page 153.)

Problem 3. Suppose that we have a connected Dynkin diagram corresponding to a reduced root system. Show that no more than three edges can be incident to a given vertex. Deduce that the only reduced root system with a connected Dynkin diagram and at least one triple edge is G_2 . [You are not supposed to use the classification of Dynkin diagrams here. This is rather one of the steps in proving that theorem in the non simply-laced case.]

Problem 4. Fix a finite-dimensional complex semisimple Lie algebra. Prove a universality property of the Verma module M_{λ} of highest weight λ with a highest weight vector v_{λ} : given a highest weight representation V of highest weight λ with a highest-weight vector v, there is a unique morphism of representations $M_{\lambda} \to V$ mapping v_{λ} to v. Show that this morphism will automatically be onto.