Posted: 9/23; Updated: 9/29; Due: Friday, 9/30/2016
The problem set is due at the beginning of the class on Friday, September 23.
Reading: Class notes. Text: Section 2.2 (pages 110, 158 (Exercise 32), 147150), Section 3.1 (185-193 through the Exercise, 197-200, 195), Section 3.A (263). Beware that in the text these are done for singular homology, whereas we have been doing all that for simplicial homology.

Problem 1. Let K be a not necessarily connected simplicial complex in \mathbb{R}^{n}. Think of \mathbb{R}^{n} as being triangulated, i.e., provided with the structure of a simplicial complex, in such a way that K is a subcomplex. Then the exact sequence of a pair shows in particular that $H_{1}\left(\mathbb{R}^{n}, K ; G\right) \cong \tilde{H}_{0}(K ; G)$. A simplicial path in \mathbb{R}^{n} between points in K will always be a relative 1-cycle. (No need to prove all that.) Show that such a path represents $0 \in H_{1}\left(\mathbb{R}^{n}, K ; \mathbb{Z}\right)$ if and only if the endpoints lie in the same component of K.

Problem 2. Think of the torus T^{2} as the union of two cylinders glued along their boundary circles. Use the Mayer-Vietoris sequence to compute $H_{\bullet}\left(T^{2} ; G\right)$. You may use homotopy invariance to identify the homology of the cylinder.

Problem 3. Suppose a pair of simplicial complexes $L \subset K$ is given and $C L$ is the cone on the subcomplex L. Show that for all n we have isomorphisms $H_{n}(K, L ; G) \cong$ $H_{n}(K \cup C L, C L ; G) \cong \tilde{H}_{n}(K \cup C L ; G) \cong \tilde{H}_{n}(K / L ; G)$.

Problem 4. Use the previous problem to compute the homology of $S^{m} \times S^{n}$ with coefficients in G for $m, n \geq 0$. (Assume $S^{m} \times S^{n} / S^{m} \vee S^{n}$ is homeomorphic to S^{m+n}, which will be easy to see when we will learn CW complexes.)
Problem 5. Let $K \subset S^{3}$ be a knot, a continuous embedding of S^{1} into S^{3}. Calculate the integral homology $H_{\bullet}\left(S^{3} \backslash K ; \mathbb{Z}\right)$ of the knot complement. Assume that the embedding of the knot extends to an embedding of the solid torus $S^{1} \times \bar{D}^{2}$, where D^{2} is the open unit disk in \mathbb{R}^{2} and \bar{D}^{2} is its closure. (Such knots are called tame.) Also assume you have a simplicial complex structure on $S^{1} \times D^{2}$ and on the complement of the interior of the image of the solid torus in S^{3}, compatible on the intersection, which is the torus $S^{1} \times S^{1}$ embedded in S^{3}.

Problem 6. Let K be a simplicial complex and L_{1}, \ldots, L_{n} be a collection of subcomplexes such that $K=L_{1} \cup \cdots \cup L_{n}$ and all nonempty intersections $L_{i_{1} \ldots i_{p}}:=$ $L_{i_{1}} \cap \cdots \cap L_{i_{p}}$ are contractible. (Imagine covering a compact manifold by sufficiently small closed balls, e.g., the circle by three arcs.) Define the nerve of the covering as the abstract simplicial complex N given by the set of subsets of $\{1, \ldots, n\}$ defined as follows:

- a subset $\left\{i_{1}, \ldots, i_{p}\right\} \subset\{1, \ldots, n\}$ belongs to N iff $L_{i_{1} \ldots i_{p}}$ is nonempty.
(1) Take the barycentric subdivision K^{\prime} of K and construct a simplicial map $f: K^{\prime} \rightarrow N$ as follows. A vertex v in K^{\prime} is the barycenter of a unique simplex in K. This simplex is in one of the L_{i} 's. Define $f(v)$ to be the least such i. Check that this defines a simplicial map, i.e., the image of each simplex in K^{\prime} is a simplex in N.
(2) Show that $f_{*}: H_{k}\left(K^{\prime} ; G\right) \rightarrow H_{k}(N ; G)$ is an isomorphism for all k. You may use the fact that $H_{k}\left(K^{\prime} ; G\right) \cong H_{k}(K ; G)$. [Hint: Use induction on n and Mayer-Vietoris to complete the induction step.]

Problem 7. Let G be an abelian group and $n G:=\{n g \mid g \in G\}$. Prove that $\operatorname{Hom}(G, \mathbb{Z}) \cong \operatorname{Hom}(n G, \mathbb{Z})$.

