Posted: 11/02; Updated: 11/07; Due: Friday, 11/11/2016
The problem set is due at the beginning of the class on Friday, November 11.
Reading: Class notes. Text: Sections 2.1 (108-113, 119-126), 2.2 (149-153), 2.3 (160-162) and 3.1 (197-202).
Conventions: Homology by default means singular homology. No coefficients means integral coefficients: $H_{n}(X):=H_{n}(X ; \mathbb{Z})$. A closed manifold is a smooth, compact manifold with no boundary.

Problem 1. Let M be a closed orientable surface embedded in \mathbb{R}^{3} in such a way that reflection across a plane P defines a homeomorphism $r: M \rightarrow M$ fixing $M \cap P$, a collection of circles. Is it possible to homotope r to have no fixed points? [Hint: Assess the situation using a problem from the previous homework. You may assume that tubular neighborhood of a circle fixed by r is a cylinder.]

Problem 2. Show that $\tilde{H}_{n}(X) \cong \tilde{H}_{n+1}(S X)$ for all $n \geq-1$, where $S X$ is the suspension of X.

Problem 3. Prove that $H_{n}(X, Y) \cong H_{n}(X \cup C Y, C Y)$ for $n \geq 0$ and $H_{n}(X, Y) \cong$ $H_{n}(X \cup C Y)$ for $n \geq 1$.

Problem 4. Given a connected CW complex X and a subcomplex Y, prove that $H_{n}(X, Y) \cong \tilde{H}_{n}(X / Y)$.
Problem 5. Show that $H_{1}(X, A)$ is not isomorphic to $\tilde{H}_{1}(X / A)$ if $X=[0,1]$ and A is the sequence $1,1 / 2,1 / 3, \ldots$ together with its limit 0 . [Hint: See Example 1.25 in Hatcher, Chapter 1.]
Problem 6. If $T_{n}(X, A)$ denotes the torsion subgroup of $H_{n}(X, A ; \mathbb{Z})$, show that the functors $(X, A) \mapsto T_{n}(X, A)$, with the obvious induced homomorphisms $T_{n}(X, A)$ $\rightarrow T_{n}(Y, B)$ and boundary maps $T_{n}(X, A) \rightarrow T_{n-1}(A)$, do not define a homology theory.

Problem 7. Show that the functors $H^{n}(X, A)=\operatorname{Hom}\left(H_{n}(X, A), \mathbb{Z}\right)$ do not define a cohomology theory.

Problem 8. Let $p: X \rightarrow Y$ be a covering space with finite fibers of cardinality n. Using singular chains, construct a homomorphism $t: H_{\bullet}(Y ; G) \rightarrow H_{\bullet}(X ; G)$ such that the composite $p_{*} \circ t: H_{\bullet}(Y ; G) \rightarrow H_{\bullet}(Y ; G)$ is multiplication by n.

