Math 8306

Homework 5

Posted: 11/02; Updated: 11/07; Due: Friday, 11/11/2016 The problem set is due at the beginning of the class on Friday, November 11.

Reading: Class notes. Text: Sections 2.1 (108–113, 119–126), 2.2 (149–153), 2.3 (160–162) and 3.1 (197–202).

Conventions: Homology by default means singular homology. No coefficients means integral coefficients: $H_n(X) := H_n(X; \mathbb{Z})$. A closed manifold is a smooth, compact manifold with no boundary.

Problem 1. Let M be a closed orientable surface embedded in \mathbb{R}^3 in such a way that reflection across a plane P defines a homeomorphism $r: M \to M$ fixing $M \cap P$, a collection of circles. Is it possible to homotope r to have no fixed points? [*Hint*: Assess the situation using a problem from the previous homework. You may assume that tubular neighborhood of a circle fixed by r is a cylinder.]

Problem 2. Show that $\tilde{H}_n(X) \cong \tilde{H}_{n+1}(SX)$ for all $n \ge -1$, where SX is the suspension of X.

Problem 3. Prove that $H_n(X,Y) \cong H_n(X \cup CY,CY)$ for $n \ge 0$ and $H_n(X,Y) \cong H_n(X \cup CY)$ for $n \ge 1$.

Problem 4. Given a connected CW complex X and a subcomplex Y, prove that $H_n(X,Y) \cong \tilde{H}_n(X/Y)$.

Problem 5. Show that $H_1(X, A)$ is not isomorphic to $\tilde{H}_1(X/A)$ if X = [0, 1] and A is the sequence $1, 1/2, 1/3, \ldots$ together with its limit 0. [*Hint*: See Example 1.25 in Hatcher, Chapter 1.]

Problem 6. If $T_n(X, A)$ denotes the torsion subgroup of $H_n(X, A; \mathbb{Z})$, show that the functors $(X, A) \mapsto T_n(X, A)$, with the obvious induced homomorphisms $T_n(X, A) \to T_n(Y, B)$ and boundary maps $T_n(X, A) \to T_{n-1}(A)$, do not define a homology theory.

Problem 7. Show that the functors $H^n(X, A) = \text{Hom}(H_n(X, A), \mathbb{Z})$ do not define a cohomology theory.

Problem 8. Let $p: X \to Y$ be a covering space with finite fibers of cardinality n. Using singular chains, construct a homomorphism $t: H_{\bullet}(Y;G) \to H_{\bullet}(X;G)$ such that the composite $p_* \circ t: H_{\bullet}(Y;G) \to H_{\bullet}(Y;G)$ is multiplication by n.