Posted: 11/26; Updated 12/08; Due: Friday, 12/09/2016
The problem set is due at the beginning of the class on Friday, December 9.
Reading: Class notes. Text: Sections 2.3 (160-165), 3.1 (197-202), 3.2 (Example 3.7), 2.1 (128-130) and 3.B (268-273, done using cellular homology), Matthew Ando's lecture on Alexander-Whitney online (Lecture Notes 5), Section 3.B (273275).

Conventions: Homology by default means singular homology. No coefficients means integral coefficients: $H_{n}(X):=H_{n}(X ; \mathbb{Z})$.

Problem 1. Show that $S^{1} \times S^{1}$ and $S^{1} \vee S^{1} \vee S^{2}$ have isomorphic homology groups in all dimensions, but their universal covering spaces do not. Hint: The universal covering space of $S^{1} \vee S^{1} \vee S^{2}$ is the tree on p. 59 (Section 1.3) of Hatcher with a copy of S^{2} attached at each vertex.

Problem 2. Compute the homology $H_{k}\left(T^{n}\right)$ of the torus $T^{n}=\left(S^{1}\right)^{n}$.
Problem 3. Use the Künneth theorem to show that the product of two closed manifolds is orientable, if and only if both are.

Problem 4. Prove that the sphere $S^{n}, n \geq 0$, is not the product of two manifolds of positive dimension.

Problem 5. Compute the homology of $S^{m} \times \mathbb{R} P^{n}$. You may assume the homology of each factor to be known.

Problem 6. Repeat the proof of the algebraic Künneth theorem to show that for two nonnegative chain complexes C_{\bullet} and C_{\bullet}^{\prime} of vector spaces over a field k, $H_{n}\left(C_{\bullet} \otimes_{k} C_{\bullet}^{\prime}\right)=\bigoplus_{i+j=n} H_{i}\left(C_{\bullet}\right) \otimes_{k} H_{j}\left(C_{\bullet}^{\prime}\right)$. What can you say about $H_{n}(X \times Y ; k)$ for two topological spaces X and Y ?

Problem 7. Show that the cup product

$$
H^{2}\left(S^{2} \vee S^{4}\right) \otimes H^{2}\left(S^{2} \vee S^{4}\right) \rightarrow H^{4}\left(S^{2} \vee S^{4}\right)
$$

is zero. Hint: Consider a map $f: S^{2} \vee S^{4} \rightarrow S^{2}$.
Problem 8. Let $\Delta[k]$ be the simplicial set with

$$
\Delta[k]_{n}:=\left\{\left(i_{0}, i_{1}, \ldots, i_{n}\right) \mid i_{j} \in \mathbb{Z} \text { and } 0 \leq i_{0} \leq i_{1} \leq \cdots \leq i_{n} \leq k\right\}
$$

where d_{j} and s_{j} are defined by dropping and repeating the j th component. Show that the geometric realization $|\Delta[k]|$ of $\Delta[k]$ is homeomorphic to the standard k simplex Δ^{k}. Just find a way to identify them, i.e., show there is a bijection, do not worry about proving it is a homeomorphism, as long as you convince yourself that it is. Hint: For any simplicial set X_{\bullet}, its geometric realization $\left|X_{\bullet}\right|=\coprod_{n \geq 0} X_{n} \times \Delta^{n} /\left\{\left(s_{i} x, u\right) \sim\left(x, \sigma_{i} u\right),\left(d_{i} x, u\right) \sim\left(x, \delta_{i} u\right)\right\}=\coprod_{n \geq 0} X_{n}^{\text {nondeg }} \times$ $\Delta^{n} /\left\{\left(d_{i} x, u\right) \sim\left(x, \delta_{i} u\right)\right\}$, where $X_{n}^{\text {nondeg }}:=X_{n} \backslash \bigcup_{i=0}^{n-1} s_{i}\left(X_{n-1}\right)$ is the set of "nondegenerate simplices" in X_{n}, obtained by removing the points in X_{n} which may be represented as $s_{i} x$ for some i and x. This identification of $\left|X_{\bullet}\right|$ comes from taking the quotient by the relation $\left(s_{i} x, u\right) \sim\left(x, \sigma_{i} u\right)$ first and noticing that every degenerate simplex is a deneracy (the result of applying a sequence of degeneracy maps) of a unique nondegenerate simplex via a unique degeneracy. This means that in the geometric realization, a degenerate simplex gets collapsed onto a unique smaller-dimensional simplex by a unique map.

